Skip to content
Related Articles

Related Articles

Save Article
Improve Article
Save Article
Like Article

Sum of elements in given range from Array formed by infinitely concatenating given array

  • Difficulty Level : Hard
  • Last Updated : 03 Aug, 2021

Given an array arr[](1-based indexing) consisting of N positive integers and two positive integers L and R,  the task is to find the sum of array elements over the range [L, R] if the given array arr[] is concatenating to itself infinite times.

Examples:

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.

Input: arr[] = {1, 2, 3}, L = 2, R = 8
Output: 14
Explanation:
The array, arr[] after concatenation is {1, 2, 3, 1, 2, 3, 1, 2, …} and the sum of elements from index 2 to 8 is 2 + 3 + 1 + 2 + 3 + 1 + 2 = 14.



Input: arr[] = {5, 2, 6, 9}, L = 10, R = 13
Output: 22

Naive Approach: The simplest approach to solve the given problem is to iterate over the range [L, R] using the variable i and add the value of arr[i % N] to the sum for each index. After completing the iteration, print the value of the sum as the resultant sum.

Below is the implementation of the above approach:

C++




// C++ program for the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the sum of elements
// in a given range of an infinite array
void rangeSum(int arr[], int N, int L, int R)
{
    // Stores the sum of array elements
    // from L to R
    int sum = 0;
 
    // Traverse from L to R
    for (int i = L - 1; i < R; i++) {
        sum += arr[i % N];
    }
 
    // Print the resultant sum
    cout << sum;
}
 
// Driver Code
int main()
{
    int arr[] = { 5, 2, 6, 9 };
    int L = 10, R = 13;
    int N = sizeof(arr) / sizeof(arr[0]);
    rangeSum(arr, N, L, R);
 
    return 0;
}

Java




// Java program for the above approach
import java.io.*;
 
class GFG
{
   
    // Function to find the sum of elements
    // in a given range of an infinite array
    static void rangeSum(int arr[], int N, int L, int R)
    {
       
        // Stores the sum of array elements
        // from L to R
        int sum = 0;
 
        // Traverse from L to R
        for (int i = L - 1; i < R; i++) {
            sum += arr[i % N];
        }
 
        // Print the resultant sum
        System.out.println(sum);
    }
 
    // Driver Code
    public static void main(String[] args)
    {
        int arr[] = { 5, 2, 6, 9 };
        int L = 10, R = 13;
        int N = arr.length;
        rangeSum(arr, N, L, R);
    }
}
 
// This code is contributed by Potta Lokesh

Python3




# Python 3 program for the above approach
 
# Function to find the sum of elements
# in a given range of an infinite array
def rangeSum(arr, N, L, R):
   
    # Stores the sum of array elements
    # from L to R
    sum = 0
 
    # Traverse from L to R
    for i in range(L - 1,R,1):
        sum += arr[i % N]
 
    # Print the resultant sum
    print(sum)
 
# Driver Code
if __name__ == '__main__':
    arr = [5, 2, 6, 9 ]
    L = 10
    R = 13
    N = len(arr)
    rangeSum(arr, N, L, R)
     
    # This code is contributed by divyeshrabadiya07

C#




// C# program for the above approach
using System;
class GFG {
 
    // Function to find the sum of elements
    // in a given range of an infinite array
    static void rangeSum(int[] arr, int N, int L, int R)
    {
 
        // Stores the sum of array elements
        // from L to R
        int sum = 0;
 
        // Traverse from L to R
        for (int i = L - 1; i < R; i++) {
            sum += arr[i % N];
        }
 
        // Print the resultant sum
        Console.Write(sum);
    }
 
    // Driver Code
    public static void Main(string[] args)
    {
        int[] arr = { 5, 2, 6, 9 };
        int L = 10, R = 13;
        int N = arr.Length;
        rangeSum(arr, N, L, R);
    }
}
 
// This code is contributed by ukasp.

Javascript




<script>
 
// Javascript program for the above approach
 
// Function to find the sum of elements
// in a given range of an infinite array
function rangeSum(arr, N, L, R)
{
     
    // Stores the sum of array elements
    // from L to R
    let sum = 0;
 
    // Traverse from L to R
    for(let i = L - 1; i < R; i++)
    {
        sum += arr[i % N];
    }
 
    // Print the resultant sum
    document.write(sum);
}
 
// Driver Code
let arr = [ 5, 2, 6, 9 ];
let L = 10, R = 13;
let N = arr.length
 
rangeSum(arr, N, L, R);
 
// This code is contributed by _saurabh_jaiswal
 
</script>
Output: 
22

 

Time Complexity: O(R – L) 
Auxiliary Space: O(1)

Efficient Approach: The above approach can also be optimized by using the Prefix Sum. Follow the steps below to solve the problem:

  • Initialize an array, say prefix[] of size (N + 1) with all elements as 0s.
  • Traverse the array, arr[] using the variable i and update prefix[i] to sum of prefix[i – 1] and arr[i – 1].
  • Now, the sum of elements over the range [L, R] is given by:

the sum of elements in the range [1, R] – sum of elements in the range [1, L – 1].

  • Initialize a variable, say leftSum as ((L – 1)/N)*prefix[N] + prefix[(L – 1)%N] to store the sum of elements in the range [1, L-1].
  • Similarly, initialize another variable rightSum as (R/N)*prefix[N] + prefix[R%N] to store the sum of elements in the range [1, R].
  • After completing the above steps, print the value of (rightSum – leftSum) as the resultant sum of elements over the given range [L, R].

Below is the implementation of the above approach:

C++




// C++ program for the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the sum of elements
// in a given range of an infinite array
void rangeSum(int arr[], int N, int L,
              int R)
{
    // Stores the prefix sum
    int prefix[N + 1];
    prefix[0] = 0;
 
    // Calculate the prefix sum
    for (int i = 1; i <= N; i++) {
        prefix[i] = prefix[i - 1]
                    + arr[i - 1];
    }
 
    // Stores the sum of elements
    // from 1 to L-1
    int leftsum
        = ((L - 1) / N) * prefix[N]
          + prefix[(L - 1) % N];
 
    // Stores the sum of elements
    // from 1 to R
    int rightsum = (R / N) * prefix[N]
                   + prefix[R % N];
 
    // Print the resultant sum
    cout << rightsum - leftsum;
}
 
// Driver Code
int main()
{
    int arr[] = { 5, 2, 6, 9 };
    int L = 10, R = 13;
    int N = sizeof(arr) / sizeof(arr[0]);
    rangeSum(arr, N, L, R);
 
    return 0;
}

Java




// Java program for the above approach
import java.io.*;
 
class GFG{
     
// Function to find the sum of elements
// in a given range of an infinite array
static void rangeSum(int arr[], int N, int L, int R)
{
   
    // Stores the prefix sum
    int prefix[] = new int[N+1];
    prefix[0] = 0;
 
    // Calculate the prefix sum
    for (int i = 1; i <= N; i++) {
        prefix[i] = prefix[i - 1]
                    + arr[i - 1];
    }
 
    // Stores the sum of elements
    // from 1 to L-1
    int leftsum
        = ((L - 1) / N) * prefix[N]
          + prefix[(L - 1) % N];
 
    // Stores the sum of elements
    // from 1 to R
    int rightsum = (R / N) * prefix[N]
                   + prefix[R % N];
 
    // Print the resultant sum
    System.out.print( rightsum - leftsum);
}
 
// Driver Code
public static void main (String[] args)
{
    int arr[] = { 5, 2, 6, 9 };
    int L = 10, R = 13;
    int N = arr.length;
    rangeSum(arr, N, L, R);
 
}
}
 
// This code is contributed by shivanisinghss2110

Python3




# Python 3 program for the above approach
 
# Function to find the sum of elements
# in a given range of an infinite array
def rangeSum(arr, N, L, R):
   
    # Stores the prefix sum
    prefix = [0 for i in range(N + 1)]
    prefix[0] = 0
 
    # Calculate the prefix sum
    for i in range(1,N+1,1):
        prefix[i] = prefix[i - 1] + arr[i - 1]
 
    # Stores the sum of elements
    # from 1 to L-1
    leftsum = ((L - 1) // N) * prefix[N] + prefix[(L - 1) % N]
 
    # Stores the sum of elements
    # from 1 to R
    rightsum = (R // N) * prefix[N] + prefix[R % N]
 
    # Print the resultant sum
    print(rightsum - leftsum)
 
# Driver Code
if __name__ == '__main__':
    arr = [5, 2, 6, 9]
    L = 10
    R = 13
    N = len(arr)
    rangeSum(arr, N, L, R)
 
    # This code is contributed by SURENDRA_GANGWAR.

C#




// C# program for the above approach
using System;
 
class GFG{
     
// Function to find the sum of elements
// in a given range of an infinite array
static void rangeSum(int []arr, int N, int L, int R)
{
   
    // Stores the prefix sum
    int []prefix = new int[N+1];
    prefix[0] = 0;
 
    // Calculate the prefix sum
    for (int i = 1; i <= N; i++) {
        prefix[i] = prefix[i - 1]
                    + arr[i - 1];
    }
 
    // Stores the sum of elements
    // from 1 to L-1
    int leftsum
        = ((L - 1) / N) * prefix[N]
          + prefix[(L - 1) % N];
 
    // Stores the sum of elements
    // from 1 to R
    int rightsum = (R / N) * prefix[N]
                   + prefix[R % N];
 
    // Print the resultant sum
    Console.Write( rightsum - leftsum);
}
 
// Driver Code
public static void Main (String[] args)
{
    int []arr = { 5, 2, 6, 9 };
    int L = 10, R = 13;
    int N = arr.Length;
    rangeSum(arr, N, L, R);
 
}
}
 
// This code is contributed by shivanisinghss2110

Javascript




<script>
 
// JavaScript program for the above approach
 
// Function to find the sum of elements
// in a given range of an infinite array
function rangeSum(arr, N, L, R) {
  // Stores the prefix sum
  let prefix = new Array(N + 1);
  prefix[0] = 0;
 
  // Calculate the prefix sum
  for (let i = 1; i <= N; i++) {
    prefix[i] = prefix[i - 1] + arr[i - 1];
  }
 
  // Stores the sum of elements
  // from 1 to L-1
  let leftsum = ((L - 1) / N) * prefix[N] + prefix[(L - 1) % N];
 
  // Stores the sum of elements
  // from 1 to R
  let rightsum = (R / N) * prefix[N] + prefix[R % N];
 
  // Print the resultant sum
  document.write(rightsum - leftsum);
}
 
// Driver Code
 
let arr = [5, 2, 6, 9];
let L = 10,
  R = 13;
let N = arr.length;
rangeSum(arr, N, L, R);
 
</script>
Output: 
22

 

Time Complexity: O(N)
Auxiliary Space: O(N)




My Personal Notes arrow_drop_up
Recommended Articles
Page :