Skip to content
Related Articles

Related Articles

Save Article
Improve Article
Save Article
Like Article

Minimum halls required for class scheduling

  • Difficulty Level : Medium
  • Last Updated : 25 May, 2021

Given N lecture timings, with their start time and end time (both inclusive), the task is to find the minimum number of halls required to hold all the classes such that a single hall can be used for only one lecture at a given time. Note that the maximum end time can be 105.
Examples: 
 

Input: lectures[][] = {{0, 5}, {1, 2}, {1, 10}} 
Output:
All lectures must be held in different halls because 
at time instance 1 all lectures are ongoing.
Input: lectures[][] = {{0, 5}, {1, 2}, {6, 10}} 
Output:
 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.

 



Approach: 
 

  • Assuming that time T starts with 0. The task is to find the maximum number of lectures that are ongoing at a particular instance of time. This will give the minimum number of halls required to schedule all the lectures.
  • To find the number of lectures ongoing at any instance of time. Maintain a prefix_sum[] which will store the number of lectures ongoing at any instance of time t. For any lecture with timings between [s, t], do prefix_sum[s]++ and prefix_sum[t + 1]–.
  • Afterward, the cumulative sum of this prefix array will give the count of lectures going on at any instance of time.
  • The maximum value for any time instant t in the array is the minimum number of halls required.

Below is the implementation of the above approach: 
 

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
#define MAX 100001
 
// Function to return the minimum
// number of halls required
int minHalls(int lectures[][2], int n)
{
 
    // Array to store the number of
    // lectures ongoing at time t
    int prefix_sum[MAX] = { 0 };
 
    // For every lecture increment start
    // point s decrement (end point + 1)
    for (int i = 0; i < n; i++) {
        prefix_sum[lectures[i][0]]++;
        prefix_sum[lectures[i][1] + 1]--;
    }
 
    int ans = prefix_sum[0];
 
    // Perform prefix sum and update
    // the ans to maximum
    for (int i = 1; i < MAX; i++) {
        prefix_sum[i] += prefix_sum[i - 1];
        ans = max(ans, prefix_sum[i]);
    }
 
    return ans;
}
 
// Driver code
int main()
{
    int lectures[][2] = { { 0, 5 },
                          { 1, 2 },
                          { 1, 10 } };
    int n = sizeof(lectures) / sizeof(lectures[0]);
 
    cout << minHalls(lectures, n);
 
    return 0;
}

Java




// Java implementation of the approach
import java.util.*;
 
class GFG
{
static int MAX = 100001;
 
// Function to return the minimum
// number of halls required
static int minHalls(int lectures[][], int n)
{
 
    // Array to store the number of
    // lectures ongoing at time t
    int []prefix_sum = new int[MAX];
 
    // For every lecture increment start
    // point s decrement (end point + 1)
    for (int i = 0; i < n; i++)
    {
        prefix_sum[lectures[i][0]]++;
        prefix_sum[lectures[i][1] + 1]--;
    }
 
    int ans = prefix_sum[0];
 
    // Perform prefix sum and update
    // the ans to maximum
    for (int i = 1; i < MAX; i++)
    {
        prefix_sum[i] += prefix_sum[i - 1];
        ans = Math.max(ans, prefix_sum[i]);
    }
    return ans;
}
 
// Driver code
public static void main(String[] args)
{
    int lectures[][] = {{ 0, 5 },
                        { 1, 2 },
                        { 1, 10 }};
    int n = lectures.length;
 
    System.out.println(minHalls(lectures, n));
}
}
 
// This code is contributed by PrinciRaj1992

Python3




# Python3 implementation of the approach
MAX = 100001
 
# Function to return the minimum
# number of halls required
def minHalls(lectures, n) :
 
    # Array to store the number of
    # lectures ongoing at time t
    prefix_sum = [0] * MAX;
     
    # For every lecture increment start
    # point s decrement (end point + 1)
    for i in range(n) :
        prefix_sum[lectures[i][0]] += 1;
        prefix_sum[lectures[i][1] + 1] -= 1;
         
    ans = prefix_sum[0];
     
    # Perform prefix sum and update
    # the ans to maximum
    for i in range(1, MAX) :
        prefix_sum[i] += prefix_sum[i - 1];
        ans = max(ans, prefix_sum[i]);
         
    return ans;
 
# Driver code
if __name__ == "__main__" :
 
    lectures = [[ 0, 5 ],
                [ 1, 2 ],
                [ 1, 10 ]];
                 
    n = len(lectures);
 
    print(minHalls(lectures, n));
 
# This code is contributed by AnkitRai01

C#




// C# implementation of the approach
using System;
     
class GFG
{
static int MAX = 100001;
 
// Function to return the minimum
// number of halls required
static int minHalls(int [,]lectures, int n)
{
 
    // Array to store the number of
    // lectures ongoing at time t
    int []prefix_sum = new int[MAX];
 
    // For every lecture increment start
    // point s decrement (end point + 1)
    for (int i = 0; i < n; i++)
    {
        prefix_sum[lectures[i,0]]++;
        prefix_sum[lectures[i,1] + 1]--;
    }
 
    int ans = prefix_sum[0];
 
    // Perform prefix sum and update
    // the ans to maximum
    for (int i = 1; i < MAX; i++)
    {
        prefix_sum[i] += prefix_sum[i - 1];
        ans = Math.Max(ans, prefix_sum[i]);
    }
    return ans;
}
 
// Driver code
public static void Main(String[] args)
{
    int [,]lectures = {{ 0, 5 },
                       { 1, 2 },
                       { 1, 10 }};
    int n = lectures.GetLength(0);
 
    Console.WriteLine(minHalls(lectures, n));
}
}
 
// This code is contributed by 29AjayKumar

Javascript




<script>
 
// JavaScript implementation of the approach
 
const MAX = 100001;
 
// Function to return the minimum
// number of halls required
function minHalls(lectures, n)
{
 
    // Array to store the number of
    // lectures ongoing at time t
    let prefix_sum = new Uint8Array(MAX);
 
    // For every lecture increment start
    // point s decrement (end point + 1)
    for (let i = 0; i < n; i++) {
        prefix_sum[lectures[i][0]]++;
        prefix_sum[lectures[i][1] + 1]--;
    }
 
    let ans = prefix_sum[0];
 
    // Perform prefix sum and update
    // the ans to maximum
    for (let i = 1; i < MAX; i++) {
        prefix_sum[i] += prefix_sum[i - 1];
        ans = Math.max(ans, prefix_sum[i]);
    }
 
    return ans;
}
 
// Driver code
    let lectures = [ [ 0, 5 ],
                        [ 1, 2 ],
                        [ 1, 10 ] ];
    let n = lectures.length;
 
    document.write(minHalls(lectures, n));
 
 
 
// This code is contributed by Surbhi Tyagi.
 
</script>
Output: 
3

 




My Personal Notes arrow_drop_up
Recommended Articles
Page :