# Sum of bitwise OR of all possible subsets of given set

Given an array arr[] of size n, we need to find sum of all the values that comes from ORing all the elements of the subsets.

Prerequisites : Subset Sum of given set

Examples :

```Input :  arr[] = {1, 2, 3}
Output : 18
Total Subsets = 23 -1= 7
1 = 1
2 = 2
3 = 3
1 | 2 = 3
1 | 3 = 3
2 | 3 = 3
1 | 2 | 3 = 3
0(empty subset)
Now SUM of all these ORs = 1 + 2 + 3 + 3 +
3 + 3 + 3
= 18

Input : arr[] = {1, 2, 3}
Output : 18
```

## Recommended: Please try your approach on {IDE} first, before moving on to the solution.

A Naive approach is to take the OR all possible combination of array[] elements and then perform the summation of all values. Time complexity of this approach grows exponentially so it would not be better for large value of n.

An Efficient approach is to find the pattern with respect to the property of OR. Now again consider the subset in binary form like:

```    1 = 001
2 = 010
3 = 011
1 | 2 = 011
1 | 3 = 011
2 | 3 = 011
1|2|3 = 011
```

Insted of taking the OR of all possible elements of array, Here we will consider all possible subset with ith bit 1.
Now, consider the ith bit in all the resultant ORs, it is zero only if all the ith bit of elements in the subset is 0.
Number of subset with ith bit 1 = total possible subsets – subsets with all ith bit 0. Here, total subsets = 2^n – 1 and subsets with all ith bits 0 = 2^( count of zeros at ith bit of all the elements of array) – 1. Now, Total subset OR with ith bit 1 = (2^n-1)-(2^(count of zeros at ith bit)-1). Total value contributed by those bits with value 1 = total subset OR with ith bit 1 *(2^i).
Now, total sum = (total subset with ith bit 1) * 2^i + (total subset with i+1th bit 1) * 2^(i+1) + ……… + (total subset with 32 bit 1) * 2^32.

## C++

 `// CPP code to find the OR_SUM ` `#include ` `using` `namespace` `std; ` ` `  `#define INT_SIZE 32 ` ` `  `// function to find the OR_SUM ` `int` `ORsum(``int` `arr[], ``int` `n) ` `{ ` `    ``// create an array of size 32 ` `    ``// and store the sum of bits  ` `    ``// with value 0 at every index. ` `    ``int` `zerocnt[INT_SIZE] = { 0 }; ` ` `  `    ``for` `(``int` `i = 0; i < INT_SIZE; i++)      ` `        ``for` `(``int` `j = 0; j < n; j++)         ` `            ``if` `(!(arr[j] & 1 << i)) ` `                ``zerocnt[i] += 1;             ` `     `  `    ``// for each index the OR sum contributed ` `    ``// by that bit of subset will be 2^(bit index) ` `    ``// now the OR of the bits is 0 only if ` `    ``// all the ith bit of the elements in subset  ` `    ``// is 0. ` `    ``int` `ans = 0; ` `    ``for` `(``int` `i = 0; i < INT_SIZE; i++)  ` `    ``{ ` `        ``ans += ((``pow``(2, n) - 1) -  ` `               ``(``pow``(2, zerocnt[i]) - 1)) *  ` `                ``pow``(2, i); ` `    ``} ` ` `  `    ``return` `ans; ` `} ` ` `  `// Driver code ` `int` `main() ` `{ ` `    ``int` `arr[] = { 1, 2, 3 }; ` `    ``int` `size = ``sizeof``(arr) / ``sizeof``(arr); ` `    ``cout << ORsum(arr, size); ` `    ``return` `0; ` `} `

## Java

 `// Java code to find  ` `// the OR_SUM ` `import` `java.io.*; ` ` `  `class` `GFG { ` `     `  `static` `int` `INT_SIZE = ``32``; ` ` `  `    ``// function to find  ` `    ``// the OR_SUM ` `    ``static` `int` `ORsum(``int` `[]arr, ``int` `n) ` `    ``{ ` `         `  `        ``// create an array of size 32 ` `        ``// and store the sum of bits  ` `        ``// with value 0 at every index. ` `        ``int` `zerocnt[] = ``new` `int``[INT_SIZE] ; ` `     `  `        ``for` `(``int` `i = ``0``; i < INT_SIZE; i++)      ` `            ``for` `(``int` `j = ``0``; j < n; j++)      ` `                ``if` `((arr[j] & ``1` `<< i) == ``0``) ` `                    ``zerocnt[i] += ``1``;          ` `         `  `        ``// for each index the OR ` `        ``// sum contributed by that ` `        ``// bit of subset will be  ` `        ``// 2^(bit index) now the OR ` `        ``// of the bits is 0 only if ` `        ``// all the ith bit of the   ` `        ``// elements in subset is 0. ` `        ``int` `ans = ``0``; ` `        ``for` `(``int` `i = ``0``; i < INT_SIZE; i++)  ` `        ``{ ` `            ``ans += ((Math.pow(``2``, n) - ``1``) -  ` `                ``(Math.pow(``2``, zerocnt[i]) - ``1``)) *  ` `                                 ``Math.pow(``2``, i); ` `        ``} ` `     `  `        ``return` `ans; ` `         `  `    ``} ` `    ``// Driver Code ` `    ``public` `static` `void` `main(String[] args) ` `    ``{ ` `        ``int` `arr[] = { ``1``, ``2``, ``3` `}; ` `        ``int` `size = arr.length; ` `        ``System.out.println(ORsum(arr, size)); ` `         `  `    ``} ` `} ` ` `  `// This code is contributed by Sam007 `

## Python3

 `INT_SIZE ``=` `32` ` `  `# function to find the OR_SUM ` `def` `ORsum(arr, n): ` `    ``# create an array of size 32 ` `    ``# and store the sum of bits  ` `    ``# with value 0 at every index. ` `    ``zerocnt ``=` `[``0` `for` `i ``in` `range``(INT_SIZE)] ` ` `  `    ``for` `i ``in` `range``(INT_SIZE):     ` `        ``for` `j ``in` `range``(n):     ` `            ``if` `not` `(arr[j] & (``1` `<< i)): ` `                ``zerocnt[i] ``+``=` `1`             `     `  `    ``# for each index the OR sum contributed ` `    ``# by that bit of subset will be 2^(bit index) ` `    ``# now the OR of the bits is 0 only if ` `    ``# all the ith bit of the elements in subset  ` `    ``# is 0. ` `    ``ans ``=` `0` `    ``for` `i ``in` `range``(INT_SIZE): ` `        ``ans ``+``=` `((``2` `*``*` `n ``-` `1``) ``-` `(``2` `*``*` `zerocnt[i] ``-` `1``)) ``*` `2` `*``*` `i ` ` `  `    ``return` `ans ` ` `  `# Driver code ` ` `  `if` `__name__ ``=``=` `"__main__"``: ` `    ``arr``=` `[``1``, ``2``, ``3``] ` `    ``size ``=` `len``(arr) ` `    ``print``(ORsum(arr, size)) ` ` `  `# This code is contributed by vaibhav29498 `

## C#

 `// C# code to find  ` `// the OR_SUM ` `using` `System; ` ` `  `class` `GFG { ` `     `  `static` `int` `INT_SIZE = 32; ` ` `  `    ``// function to find  ` `    ``// the OR_SUM ` `    ``static` `int` `ORsum(``int` `[]arr, ``int` `n) ` `    ``{ ` `         `  `        ``// create an array of size 32 ` `        ``// and store the sum of bits  ` `        ``// with value 0 at every index. ` `        ``int` `[]zerocnt = ``new` `int``[INT_SIZE] ; ` `     `  `        ``for` `(``int` `i = 0; i < INT_SIZE; i++)      ` `            ``for` `(``int` `j = 0; j < n; j++)      ` `                ``if` `((arr[j] & 1 << i) == 0) ` `                    ``zerocnt[i] += 1;          ` `         `  `        ``// for each index the OR ` `        ``// sum contributed by that ` `        ``// bit of subset will be  ` `        ``// 2^(bit index) now the OR ` `        ``// of the bits is 0 only if ` `        ``// all the ith bit of the  ` `        ``// elements in subset is 0. ` `        ``int` `ans = 0; ` `        ``for` `(``int` `i = 0; i < INT_SIZE; i++)  ` `        ``{ ` `            ``ans += (``int``)(((Math.Pow(2, n) - 1) -  ` `                 ``(Math.Pow(2, zerocnt[i]) - 1)) *  ` `                                ``Math.Pow(2, i)); ` `        ``} ` `     `  `        ``return` `ans; ` `         `  `    ``} ` `     `  `    ``// Driver Code ` `    ``public` `static` `void` `Main() ` `    ``{ ` `        ``int` `[]arr = {1, 2, 3}; ` `        ``int` `size = arr.Length; ` `        ``Console.Write(ORsum(arr, size)); ` `         `  `    ``} ` `} ` ` `  `// This code is contributed by nitin mittal `

## PHP

 ` `

Output:

```18
```

Time complexity: O(n)
Auxiliary space: O(n)

My Personal Notes arrow_drop_up Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.

Article Tags :
Practice Tags :

2

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.