# Sum of nodes at maximum depth of a Binary Tree

Given a root node to a tree, find the sum of all the leaf nodes which are at maximum depth from root node.

Example:

```      1
/   \
2     3
/ \   / \
4   5 6   7

Input : root(of above tree)
Output : 22

Explanation:
Nodes at maximum depth are: 4, 5, 6, 7.
So, sum of these nodes = 22
```

## Recommended: Please try your approach on {IDE} first, before moving on to the solution.

While traversing the nodes compare the level of the node with max_level (Maximum level till the current node).If the current level exceeds the maximum level, update the max_level as current level.If the max level and current level are same ,add the root data to current sum.if level is less than max_level, do nothing.

## C++

 `// Code to find the sum of the nodes ` `// which are present at the maximum depth. ` `#include   ` `#include ` `using` `namespace` `std; ` ` `  `int` `sum = 0, max_level = INT_MIN; ` ` `  `struct` `Node ` `{ ` `    ``int` `d; ` `    ``Node *l; ` `    ``Node *r; ` `}; ` ` `  `// Function to return a new node ` `Node* createNode(``int` `d) ` `{ ` `    ``Node *node; ` `    ``node = ``new` `Node; ` `    ``node->d = d; ` `    ``node->l = NULL; ` `    ``node->r = NULL; ` `    ``return` `node; ` `} ` ` `  `// Function to find the sum of the node ` `// which are present at the maximum depth. ` `// While traversing the nodes compare the level  ` `// of the node with max_level  ` `// (Maximum level till the current node). ` `// If the current level exceeds the maximum level,  ` `// update the max_level as current level. ` `// If the max level and current level are same, ` `// add the root data to current sum.  ` `void` `sumOfNodesAtMaxDepth(Node *ro,``int` `level) ` `{ ` `    ``if``(ro == NULL) ` `    ``return``; ` `    ``if``(level > max_level) ` `    ``{ ` `        ``sum = ro -> d; ` `        ``max_level = level; ` `    ``} ` `    ``else` `if``(level == max_level) ` `    ``{ ` `        ``sum = sum + ro -> d; ` `    ``} ` `    ``sumOfNodesAtMaxDepth(ro -> l, level + 1); ` `    ``sumOfNodesAtMaxDepth(ro -> r, level + 1);  ` `} ` ` `  `// Driver Code ` `int` `main() ` `{ ` `    ``Node *root; ` `    ``root = createNode(1); ` `    ``root->l = createNode(2); ` `    ``root->r = createNode(3); ` `    ``root->l->l = createNode(4); ` `    ``root->l->r = createNode(5); ` `    ``root->r->l = createNode(6); ` `    ``root->r->r = createNode(7); ` `    ``sumOfNodesAtMaxDepth(root, 0); ` `    ``cout << sum; ` `    ``return` `0; ` `} `

## Java

 `// Java code to find the sum of the nodes  ` `// which are present at the maximum depth.  ` `class` `GFG  ` `{ ` ` `  `static` `int` `sum = ``0``, max_level = Integer.MIN_VALUE;  ` ` `  `static` `class` `Node  ` `{  ` `    ``int` `d;  ` `    ``Node l;  ` `    ``Node r;  ` `};  ` ` `  `// Function to return a new node  ` `static` `Node createNode(``int` `d)  ` `{  ` `    ``Node node;  ` `    ``node = ``new` `Node();  ` `    ``node.d = d;  ` `    ``node.l = ``null``;  ` `    ``node.r = ``null``;  ` `    ``return` `node;  ` `}  ` ` `  `// Function to find the sum of the node  ` `// which are present at the maximum depth.  ` `// While traversing the nodes compare the level  ` `// of the node with max_level  ` `// (Maximum level till the current node).  ` `// If the current level exceeds the maximum level,  ` `// update the max_level as current level.  ` `// If the max level and current level are same,  ` `// add the root data to current sum.  ` `static` `void` `sumOfNodesAtMaxDepth(Node ro,``int` `level)  ` `{  ` `    ``if``(ro == ``null``)  ` `    ``return``;  ` `    ``if``(level > max_level)  ` `    ``{  ` `        ``sum = ro . d;  ` `        ``max_level = level;  ` `    ``}  ` `    ``else` `if``(level == max_level)  ` `    ``{  ` `        ``sum = sum + ro . d;  ` `    ``}  ` `    ``sumOfNodesAtMaxDepth(ro . l, level + ``1``);  ` `    ``sumOfNodesAtMaxDepth(ro . r, level + ``1``);  ` `}  ` ` `  `// Driver Code  ` `public` `static` `void` `main(String[] args)  ` `{ ` `    ``Node root; ` `    ``root = createNode(``1``);  ` `    ``root.l = createNode(``2``);  ` `    ``root.r = createNode(``3``);  ` `    ``root.l.l = createNode(``4``);  ` `    ``root.l.r = createNode(``5``);  ` `    ``root.r.l = createNode(``6``);  ` `    ``root.r.r = createNode(``7``);  ` `    ``sumOfNodesAtMaxDepth(root, ``0``);  ` `    ``System.out.println(sum); ` `} ` `} ` ` `  `/* This code is contributed by PrinciRaj1992 */`

## Python3

 `# Python3 code to find the sum of the nodes ` `# which are present at the maximum depth. ` `sum` `=` `[``0``] ` `max_level ``=` `[``-``(``2``*``*``32``)] ` ` `  `# Binary tree node  ` `class` `createNode:  ` `     `  `    ``def` `__init__(``self``, data):  ` `        ``self``.d ``=` `data  ` `        ``self``.l ``=` `None` `        ``self``.r ``=` `None` ` `  `# Function to find the sum of the node ` `# which are present at the maximum depth. ` `# While traversing the nodes compare the level  ` `# of the node with max_level  ` `# (Maximum level till the current node). ` `# If the current level exceeds the maximum level,  ` `# update the max_level as current level. ` `# If the max level and current level are same, ` `# add the root data to current sum.  ` `def` `sumOfNodesAtMaxDepth(ro, level): ` `     `  `    ``if``(ro ``=``=` `None``): ` `        ``return` `     `  `    ``if``(level > max_level[``0``]): ` `        ``sum``[``0``] ``=` `ro . d ` `        ``max_level[``0``] ``=` `level ` `     `  `    ``elif``(level ``=``=` `max_level[``0``]): ` `        ``sum``[``0``] ``=` `sum``[``0``] ``+` `ro . d ` `     `  `    ``sumOfNodesAtMaxDepth(ro . l, level ``+` `1``) ` `    ``sumOfNodesAtMaxDepth(ro . r, level ``+` `1``)  ` `     `  `# Driver Code ` `root ``=` `createNode(``1``) ` `root.l ``=` `createNode(``2``) ` `root.r ``=` `createNode(``3``) ` `root.l.l ``=` `createNode(``4``) ` `root.l.r ``=` `createNode(``5``) ` `root.r.l ``=` `createNode(``6``) ` `root.r.r ``=` `createNode(``7``) ` `sumOfNodesAtMaxDepth(root, ``0``) ` `print``(``sum``[``0``]) ` ` `  `# This code is contributed by SHUBHAMSINGH10 `

## C#

 `// C# code to find the sum of the nodes  ` `// which are present at the maximum depth. ` `using` `System; ` ` `  `class` `GFG  ` `{  ` ` `  `static` `int` `sum = 0, max_level = ``int``.MinValue;  ` ` `  `public` `class` `Node  ` `{  ` `    ``public` `int` `d;  ` `    ``public` `Node l;  ` `    ``public` `Node r;  ` `};  ` ` `  `// Function to return a new node  ` `static` `Node createNode(``int` `d)  ` `{  ` `    ``Node node;  ` `    ``node = ``new` `Node();  ` `    ``node.d = d;  ` `    ``node.l = ``null``;  ` `    ``node.r = ``null``;  ` `    ``return` `node;  ` `}  ` ` `  `// Function to find the sum of the node  ` `// which are present at the maximum depth.  ` `// While traversing the nodes compare the level  ` `// of the node with max_level  ` `// (Maximum level till the current node).  ` `// If the current level exceeds the maximum level,  ` `// update the max_level as current level.  ` `// If the max level and current level are same,  ` `// add the root data to current sum.  ` `static` `void` `sumOfNodesAtMaxDepth(Node ro,``int` `level)  ` `{  ` `    ``if``(ro == ``null``)  ` `    ``return``;  ` `    ``if``(level > max_level)  ` `    ``{  ` `        ``sum = ro . d;  ` `        ``max_level = level;  ` `    ``}  ` `    ``else` `if``(level == max_level)  ` `    ``{  ` `        ``sum = sum + ro . d;  ` `    ``}  ` `    ``sumOfNodesAtMaxDepth(ro . l, level + 1);  ` `    ``sumOfNodesAtMaxDepth(ro . r, level + 1);  ` `}  ` ` `  `// Driver Code  ` `public` `static` `void` `Main(String[] args)  ` `{  ` `    ``Node root;  ` `    ``root = createNode(1);  ` `    ``root.l = createNode(2);  ` `    ``root.r = createNode(3);  ` `    ``root.l.l = createNode(4);  ` `    ``root.l.r = createNode(5);  ` `    ``root.r.l = createNode(6);  ` `    ``root.r.r = createNode(7);  ` `    ``sumOfNodesAtMaxDepth(root, 0);  ` `    ``Console.WriteLine(sum);  ` `}  ` `}  ` ` `  `// This code is contributed by Princi Singh `

Output :

`22`

This article is contributed by Ashwin Loganathan. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Approach: Calculate the max depth of the given tree. Now, start traversing the tree similarly as traversed during maximum depth calculation. But, this time with one more argument (i.e. maxdepth), and traverse recursively with decreasing depth by 1 for each left or right call. Wherever max == 1, means the node at max depth is reached. So add its data value to sum. Finally, return sum.

Below is the implementation for above approach:

## Java

 `// Java code for sum of nodes ` `// at maximum depth ` `import` `java.util.*; ` ` `  `class` `Node { ` `    ``int` `data; ` `    ``Node left, right; ` ` `  `    ``// Constructor ` `    ``public` `Node(``int` `data) ` `    ``{ ` `        ``this``.data = data; ` `        ``this``.left = ``null``; ` `        ``this``.right = ``null``; ` `    ``} ` `} ` ` `  `class` `GfG { ` ` `  `    ``// function to find the sum of nodes at ` `    ``// maximum depth arguments are node and ` `    ``// max, where max is to match the depth ` `    ``// of node at every call to node, if ` `    ``// max will be equal to 1, means ` `    ``// we are at deepest node. ` `    ``public` `static` `int` `sumMaxLevelRec(Node node, ` `                     ``int` `max) ` `    ``{ ` `        ``// base case ` `        ``if` `(node == ``null``)  ` `            ``return` `0``;      ` ` `  `        ``// max == 1 to track the node ` `        ``// at deepest level ` `        ``if` `(max == ``1``)  ` `            ``return` `node.data;     ` ` `  `        ``// recursive call to left and right nodes ` `        ``return` `sumMaxLevelRec(node.left, max - ``1``) +  ` `               ``sumMaxLevelRec(node.right, max - ``1``); ` `    ``} ` ` `  `    ``public` `static` `int` `sumMaxLevel(Node root) { ` ` `  `        ``// call to function to calculate ` `        ``// max depth ` `        ``int` `MaxDepth = maxDepth(root); ` `         `  `        ``return` `sumMaxLevelRec(root, MaxDepth); ` `    ``} ` ` `  `    ``// maxDepth function to find the ` `    ``// max depth of the tree ` `    ``public` `static` `int` `maxDepth(Node node) ` `    ``{ ` `        ``// base case ` `        ``if` `(node == ``null``)  ` `            ``return` `0``;      ` ` `  `        ``// either leftDepth of rightDepth is ` `        ``// greater add 1 to include height ` `        ``// of node at which call is ` `        ``return` `1` `+ Math.max(maxDepth(node.left),  ` `                           ``maxDepth(node.right));      ` `    ``} ` ` `  `    ``// Driver code ` `    ``public` `static` `void` `main(String[] args) ` `    ``{ ` ` `  `        ``/*      1 ` `              ``/ \ ` `              ``2   3 ` `            ``/ \ / \ ` `            ``4 5 6 7     */` ` `  `        ``// Constructing tree ` `        ``Node root = ``new` `Node(``1``); ` `        ``root.left = ``new` `Node(``2``); ` `        ``root.right = ``new` `Node(``3``); ` `        ``root.left.left = ``new` `Node(``4``); ` `        ``root.left.right = ``new` `Node(``5``); ` `        ``root.right.left = ``new` `Node(``6``); ` `        ``root.right.right = ``new` `Node(``7``); ` ` `  ` `  `        ``// call to calculate required sum ` `        ``System.out.println(sumMaxLevel(root)); ` `    ``} ` `} `

## Python3

 `# Python3 code for sum of nodes at maximum depth  ` `class` `Node:  ` ` `  `    ``def` `__init__(``self``, data): ` `        ``self``.data ``=` `data ` `        ``self``.left ``=` `None` `        ``self``.right ``=` `None` ` `  `# Function to find the sum of nodes at maximum depth ` `# arguments are node and max, where Max is to match  ` `# the depth of node at every call to node, if Max  ` `# will be equal to 1, means we are at deepest node.  ` `def` `sumMaxLevelRec(node, ``Max``):  ` ` `  `    ``# base case  ` `    ``if` `node ``=``=` `None``:  ` `        ``return` `0`     ` `  `    ``# Max == 1 to track the node at deepest level  ` `    ``if` `Max` `=``=` `1``: ` `        ``return` `node.data      ` ` `  `    ``# recursive call to left and right nodes  ` `    ``return` `(sumMaxLevelRec(node.left, ``Max` `-` `1``) ``+`  `            ``sumMaxLevelRec(node.right, ``Max` `-` `1``))  ` ` `  `def` `sumMaxLevel(root):  ` ` `  `    ``# call to function to calculate max depth  ` `    ``MaxDepth ``=` `maxDepth(root)  ` `    ``return` `sumMaxLevelRec(root, MaxDepth) ` ` `  `# maxDepth function to find  ` `# the max depth of the tree  ` `def` `maxDepth(node):  ` ` `  `    ``# base case  ` `    ``if` `node ``=``=` `None``:  ` `        ``return` `0`     ` `  `    ``# Either leftDepth of rightDepth is  ` `    ``# greater add 1 to include height  ` `    ``# of node at which call is  ` `    ``return` `1` `+` `max``(maxDepth(node.left),  ` `                    ``maxDepth(node.right))  ` ` `  `# Driver code  ` `if` `__name__ ``=``=` `"__main__"``: ` ` `  `    ``# Constructing tree  ` `    ``root ``=` `Node(``1``)  ` `    ``root.left ``=` `Node(``2``)  ` `    ``root.right ``=` `Node(``3``)  ` `    ``root.left.left ``=` `Node(``4``)  ` `    ``root.left.right ``=` `Node(``5``)  ` `    ``root.right.left ``=` `Node(``6``)  ` `    ``root.right.right ``=` `Node(``7``)  ` ` `  `    ``# call to calculate required sum  ` `    ``print``(sumMaxLevel(root))  ` ` `  `# This code is contributed by Rituraj Jain `

## C#

 `using` `System; ` ` `  `// C# code for sum of nodes  ` `// at maximum depth  ` ` `  `public` `class` `Node ` `{ ` `    ``public` `int` `data; ` `    ``public` `Node left, right; ` ` `  `    ``// Constructor  ` `    ``public` `Node(``int` `data) ` `    ``{ ` `        ``this``.data = data; ` `        ``this``.left = ``null``; ` `        ``this``.right = ``null``; ` `    ``} ` `} ` ` `  `public` `class` `GfG ` `{ ` ` `  `    ``// function to find the sum of nodes at  ` `    ``// maximum depth arguments are node and  ` `    ``// max, where max is to match the depth  ` `    ``// of node at every call to node, if  ` `    ``// max will be equal to 1, means  ` `    ``// we are at deepest node.  ` `    ``public` `static` `int` `sumMaxLevelRec(Node node, ``int` `max) ` `    ``{ ` `        ``// base case  ` `        ``if` `(node == ``null``) ` `        ``{ ` `            ``return` `0; ` `        ``} ` ` `  `        ``// max == 1 to track the node  ` `        ``// at deepest level  ` `        ``if` `(max == 1) ` `        ``{ ` `            ``return` `node.data; ` `        ``} ` ` `  `        ``// recursive call to left and right nodes  ` `        ``return` `sumMaxLevelRec(node.left, max - 1)  ` `                ``+ sumMaxLevelRec(node.right, max - 1); ` `    ``} ` ` `  `    ``public` `static` `int` `sumMaxLevel(Node root) ` `    ``{ ` ` `  `        ``// call to function to calculate  ` `        ``// max depth  ` `        ``int` `MaxDepth = maxDepth(root); ` ` `  `        ``return` `sumMaxLevelRec(root, MaxDepth); ` `    ``} ` ` `  `    ``// maxDepth function to find the  ` `    ``// max depth of the tree  ` `    ``public` `static` `int` `maxDepth(Node node) ` `    ``{ ` `        ``// base case  ` `        ``if` `(node == ``null``) ` `        ``{ ` `            ``return` `0; ` `        ``} ` ` `  `        ``// either leftDepth of rightDepth is  ` `        ``// greater add 1 to include height  ` `        ``// of node at which call is  ` `        ``return` `1 + Math.Max(maxDepth(node.left),  ` `                            ``maxDepth(node.right)); ` `    ``} ` ` `  `    ``// Driver code  ` `    ``public` `static` `void` `Main(``string``[] args) ` `    ``{ ` ` `  `        ``/*     1  ` `            ``/ \  ` `            ``2 3  ` `            ``/ \ / \  ` `            ``4 5 6 7     */` ` `  `        ``// Constructing tree  ` `        ``Node root = ``new` `Node(1); ` `        ``root.left = ``new` `Node(2); ` `        ``root.right = ``new` `Node(3); ` `        ``root.left.left = ``new` `Node(4); ` `        ``root.left.right = ``new` `Node(5); ` `        ``root.right.left = ``new` `Node(6); ` `        ``root.right.right = ``new` `Node(7); ` ` `  ` `  `        ``// call to calculate required sum  ` `        ``Console.WriteLine(sumMaxLevel(root)); ` `    ``} ` `} ` ` `  `// This code is contributed by Shrikant13 `

Output :

```22
```

Time Complexity: O(N), where N is the number of nodes in the tree.

My Personal Notes arrow_drop_up Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.

Article Tags :
Practice Tags :

5

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.