# Count ways to reach the nth stair using step 1, 2 or 3

A child is running up a staircase with n steps and can hop either 1 step, 2 steps, or 3 steps at a time. Implement a method to count how many possible ways the child can run up the stairs.

Examples:

```Input : 4
Output : 7
Explantion:
Below are the four ways
1 step + 1 step + 1 step + 1 step
1 step + 2 step + 1 step
2 step + 1 step + 1 step
1 step + 1 step + 2 step
2 step + 2 step
3 step + 1 step
1 step + 3 step

Input : 3
Output : 4
Explantion:
Below are the four ways
1 step + 1 step + 1 step
1 step + 2 step
2 step + 1 step
3 step
```

## Recommended: Please try your approach on {IDE} first, before moving on to the solution.

There are two methods to solve this problem:

1. Recursive Method
2. Dynamic Programming

Method 1: Recursive.
There are n stairs, and a person is allowed to jump next stair, skip one stair or skip two stairs. So there are n stairs. So if a person is standing at i-th stair, the person can move to i+1, i+2, i+3-th stair. A recursive function can be formed where at current index i the function is recursively called for i+1, i+2 and i+3 th stair.
There is another way of forming the recursive function. To reach a stair i, a person has to jump either from i-1, i-2 or i-3 th stair or i is the starting stair.

Algorithm:

1. Create a recursive function (count(int n)) which takes only one parameter.
2. Check the base cases. If the value of n is less than 0 then return 0, and if the value of n is equal to zero then return 1 as it is the starting stair.
3. Call the function recursively with values n-1, n-2 and n-3 and sum up the values that are returned, i.e. sum = count(n-1) + count(n-2) + count(n-3)
4. Return the value of the sum.

## C++

 `// C++ Program to find n-th stair using step size ` `// 1 or 2 or 3. ` `#include ` `using` `namespace` `std; ` ` `  `class` `GFG { ` ` `  `    ``// Returns count of ways to reach n-th stair ` `    ``// using 1 or 2 or 3 steps. ` `public``: ` `    ``int` `findStep(``int` `n) ` `    ``{ ` `        ``if` `(n == 1 || n == 0) ` `            ``return` `1; ` `        ``else` `if` `(n == 2) ` `            ``return` `2; ` ` `  `        ``else` `            ``return` `findStep(n - 3) + findStep(n - 2) ` `                                   ``+ findStep(n - 1); ` `    ``} ` `}; ` ` `  `// Driver code ` `int` `main() ` `{ ` `    ``GFG g; ` `    ``int` `n = 4; ` `    ``cout << g.findStep(n); ` `    ``return` `0; ` `} ` ` `  `// This code is contributed by SoM15242 `

## C

 `// Program to find n-th stair using step size ` `// 1 or 2 or 3. ` `#include ` ` `  `// Returns count of ways to reach n-th stair ` `// using 1 or 2 or 3 steps. ` `int` `findStep(``int` `n) ` `{ ` `    ``if` `(n == 1 || n == 0) ` `        ``return` `1; ` `    ``else` `if` `(n == 2) ` `        ``return` `2; ` ` `  `    ``else` `        ``return` `findStep(n - 3) + findStep(n - 2) + findStep(n - 1); ` `} ` ` `  `// Driver code ` `int` `main() ` `{ ` `    ``int` `n = 4; ` `    ``printf``(``"%d\n"``, findStep(n)); ` `    ``return` `0; ` `} `

## Java

 `// Program to find n-th stair ` `// using step size 1 or 2 or 3. ` `import` `java.util.*; ` `import` `java.lang.*; ` ` `  `public` `class` `GfG { ` ` `  `    ``// Returns count of ways to reach ` `    ``// n-th stair using 1 or 2 or 3 steps. ` `    ``public` `static` `int` `findStep(``int` `n) ` `    ``{ ` `        ``if` `(n == ``1` `|| n == ``0``) ` `            ``return` `1``; ` `        ``else` `if` `(n == ``2``) ` `            ``return` `2``; ` ` `  `        ``else` `            ``return` `findStep(n - ``3``) + findStep(n - ``2``) + findStep(n - ``1``); ` `    ``} ` ` `  `    ``// Driver function ` `    ``public` `static` `void` `main(String argc[]) ` `    ``{ ` `        ``int` `n = ``4``; ` `        ``System.out.println(findStep(n)); ` `    ``} ` `} ` ` `  `/* This code is contributed by Sagar Shukla */`

## Python

 `# Python program to find n-th stair   ` `# using step size 1 or 2 or 3. ` ` `  `# Returns count of ways to reach n-th  ` `# stair using 1 or 2 or 3 steps. ` `def` `findStep( n) : ` `    ``if` `(n ``=``=` `1` `or` `n ``=``=` `0``) : ` `        ``return` `1` `    ``elif` `(n ``=``=` `2``) : ` `        ``return` `2` `     `  `    ``else` `: ` `        ``return` `findStep(n ``-` `3``) ``+` `findStep(n ``-` `2``) ``+` `findStep(n ``-` `1``)  ` ` `  ` `  `# Driver code ` `n ``=` `4` `print``(findStep(n)) ` ` `  `# This code is contributed by Nikita Tiwari. `

## C#

 `// Program to find n-th stair ` `// using step size 1 or 2 or 3. ` `using` `System; ` ` `  `public` `class` `GfG { ` ` `  `    ``// Returns count of ways to reach ` `    ``// n-th stair using 1 or 2 or 3 steps. ` `    ``public` `static` `int` `findStep(``int` `n) ` `    ``{ ` `        ``if` `(n == 1 || n == 0) ` `            ``return` `1; ` `        ``else` `if` `(n == 2) ` `            ``return` `2; ` ` `  `        ``else` `            ``return` `findStep(n - 3) + findStep(n - 2) + findStep(n - 1); ` `    ``} ` ` `  `    ``// Driver function ` `    ``public` `static` `void` `Main() ` `    ``{ ` `        ``int` `n = 4; ` `        ``Console.WriteLine(findStep(n)); ` `    ``} ` `} ` ` `  `/* This code is contributed by vt_m */`

## PHP

 ` `

Output :

```7
```

Complexity Analysis:

• Time Complexity: O(3n).
The time complexity of the above solution is exponential, a close upper bound will be O(3n). From each state, 3 recursive function are called. So the upperbound for n states is O(3n).
• Space Complexity:O(1).
As no extra space is required.

Note: The Time Complexity of the program can be optimized using Dynamic Programming.

Method 2: Dynamic Programming.

The idea is similar, but it can be observed that there are n states but the recursive function is called 3 ^ n times. That means that some states are called repeatedly. So the idea is to store the value of states. This can be done in two ways.

• Top-Down Approach: The first way is to keep the recursive structure intact and just store the value in a HashMap and whenever the function is called again return the value store without computing ().
• Bottom-Up Approach: The second way is to take an extra space of size n and start computing values of states from 1, 2 .. to n, i.e. compute values of i, i+1, i+2 and then use them to calculate the value of i+3.

Algorithm:

1. Create an array of size n + 1 and initialize the first 3 variables with 1, 1, 2. The base cases.
2. Run a loop from 3 to n.
3. For each index i, computer value of ith position as dp[i] = dp[i-1] + dp[i-2] + dp[i-3].
4. Print the value of dp[n], as the Count of the number of ways to reach n th step.

## C++

 `// A C++ program to count number of ways ` `// to reach n't stair when ` `#include ` `using` `namespace` `std; ` ` `  `// A recursive function used by countWays ` `int` `countWays(``int` `n) ` `{ ` `    ``int` `res[n + 1]; ` `    ``res = 1; ` `    ``res = 1; ` `    ``res = 2; ` `    ``for` `(``int` `i = 3; i <= n; i++) ` `        ``res[i] = res[i - 1] + res[i - 2] ` `                ``+ res[i - 3]; ` ` `  `    ``return` `res[n]; ` `} ` ` `  `// Driver program to test above functions ` `int` `main() ` `{ ` `    ``int` `n = 4; ` `    ``cout << countWays(n); ` `    ``return` `0; ` `} ` `//This code is contributed by shubhamsingh10 `

## C

 `// A C program to count number of ways ` `// to reach n't stair when ` `#include ` ` `  `// A recursive function used by countWays ` `int` `countWays(``int` `n) ` `{ ` `    ``int` `res[n + 1]; ` `    ``res = 1; ` `    ``res = 1; ` `    ``res = 2; ` `    ``for` `(``int` `i = 3; i <= n; i++) ` `        ``res[i] = res[i - 1] + res[i - 2] ` `                 ``+ res[i - 3]; ` ` `  `    ``return` `res[n]; ` `} ` ` `  `// Driver program to test above functions ` `int` `main() ` `{ ` `    ``int` `n = 4; ` `    ``printf``(``"%d"``, countWays(n)); ` `    ``return` `0; ` `} `

## Java

 `// Program to find n-th stair ` `// using step size 1 or 2 or 3. ` `import` `java.util.*; ` `import` `java.lang.*; ` ` `  `public` `class` `GfG { ` ` `  `    ``// A recursive function used by countWays ` `    ``public` `static` `int` `countWays(``int` `n) ` `    ``{ ` `        ``int``[] res = ``new` `int``[n + ``1``]; ` `        ``res[``0``] = ``1``; ` `        ``res[``1``] = ``1``; ` `        ``res[``2``] = ``2``; ` ` `  `        ``for` `(``int` `i = ``3``; i <= n; i++) ` `            ``res[i] = res[i - ``1``] + res[i - ``2``] ` `                     ``+ res[i - ``3``]; ` ` `  `        ``return` `res[n]; ` `    ``} ` ` `  `    ``// Driver function ` `    ``public` `static` `void` `main(String argc[]) ` `    ``{ ` `        ``int` `n = ``4``; ` `        ``System.out.println(countWays(n)); ` `    ``} ` `} ` ` `  `/* This code is contributed by Sagar Shukla */`

## Python

 `# Python program to find n-th stair   ` `# using step size 1 or 2 or 3. ` ` `  `# A recursive function used by countWays ` `def` `countWays(n) : ` `    ``res ``=` `[``0``] ``*` `(n ``+` `2``) ` `    ``res[``0``] ``=` `1` `    ``res[``1``] ``=` `1` `    ``res[``2``] ``=` `2` `     `  `    ``for` `i ``in` `range``(``3``, n ``+` `1``) : ` `        ``res[i] ``=` `res[i ``-` `1``] ``+` `res[i ``-` `2``] ``+` `res[i ``-` `3``] ` `     `  `    ``return` `res[n] ` ` `  `# Driver code ` `n ``=` `4` `print``(countWays(n)) ` ` `  ` `  `# This code is contributed by Nikita Tiwari. `

## C#

 `// Program to find n-th stair ` `// using step size 1 or 2 or 3. ` `using` `System; ` ` `  `public` `class` `GfG { ` ` `  `    ``// A recursive function used by countWays ` `    ``public` `static` `int` `countWays(``int` `n) ` `    ``{ ` `        ``int``[] res = ``new` `int``[n + 2]; ` `        ``res = 1; ` `        ``res = 1; ` `        ``res = 2; ` ` `  `        ``for` `(``int` `i = 3; i <= n; i++) ` `            ``res[i] = res[i - 1] + res[i - 2] ` `                     ``+ res[i - 3]; ` ` `  `        ``return` `res[n]; ` `    ``} ` ` `  `    ``// Driver function ` `    ``public` `static` `void` `Main() ` `    ``{ ` `        ``int` `n = 4; ` `        ``Console.WriteLine(countWays(n)); ` `    ``} ` `} ` ` `  `/* This code is contributed by vt_m */`

## PHP

 ` `

Output :

```7
```
• Working:

```1 -> 1 -> 1 -> 1
1 -> 1 -> 2
1 -> 2 -> 1
1 -> 3
2 -> 1 -> 1
2 -> 2
3 -> 1

So Total ways: 7```

Complexity Analysis:

• Time Complexity: O(n).
Only one traversal of the array is needed. So Time Complexity is O(n).
• Space Complexity: O(n).
To store the values in a DP, n extra space is needed.

Other Related Articles
http://www.geeksforgeeks.org/count-ways-reach-nth-stair/

This article is contributed by Prakhar Agrawal. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.

My Personal Notes arrow_drop_up Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.