# Count of subsets with sum equal to X

Given an array arr[] of length N and an integer X, the task is to find the number of subsets with sum equal to X.

Examples:

Input: arr[] = {1, 2, 3, 3}, X = 6
Output: 3
All the possible subsets are {1, 2, 3},
{1, 2, 3} and {3, 3}

Input: arr[] = {1, 1, 1, 1}, X = 1
Output: 4

## Recommended: Please try your approach on {IDE} first, before moving on to the solution.

Approach: A simple approach is to solve this problem by generating all the possible subsets and then checking whether the subset has the required sum. This approach will have exponential time complexity. However, for smaller values of X and array elements, this problem can be solved using dynamic programming.
Let’s look at the recurrence relation first.

dp[i][C] = dp[i + 1][C – arr[i]] + dp[i + 1][C]

Let’s understand the states of the DP now. Here, dp[i][C] stores the number of subsets of the sub-array arr[i…N-1] such that their sum is equal to C.
Thus, the recurrence is very trivial as there are only two choices i.e. either consider the ith element in the subset or don’t.

Below is the implementation of the above approach:

## C++

 `// C++ implementation of the approach ` `#include ` `using` `namespace` `std; ` ` `  `#define maxN 20 ` `#define maxSum 50 ` `#define minSum 50 ` `#define base 50 ` ` `  `// To store the states of DP ` `int` `dp[maxN][maxSum + minSum]; ` `bool` `v[maxN][maxSum + minSum]; ` ` `  `// Function to return the required count ` `int` `findCnt(``int``* arr, ``int` `i, ``int` `required_sum, ``int` `n) ` `{ ` `    ``// Base case ` `    ``if` `(i == n) { ` `        ``if` `(required_sum == 0) ` `            ``return` `1; ` `        ``else` `            ``return` `0; ` `    ``} ` ` `  `    ``// If the state has been solved before ` `    ``// return the value of the state ` `    ``if` `(v[i][required_sum + base]) ` `        ``return` `dp[i][required_sum + base]; ` ` `  `    ``// Setting the state as solved ` `    ``v[i][required_sum + base] = 1; ` ` `  `    ``// Recurrence relation ` `    ``dp[i][required_sum + base] ` `        ``= findCnt(arr, i + 1, required_sum, n) ` `          ``+ findCnt(arr, i + 1, required_sum - arr[i], n); ` `    ``return` `dp[i][required_sum + base]; ` `} ` ` `  `// Driver code ` `int` `main() ` `{ ` `    ``int` `arr[] = { 3, 3, 3, 3 }; ` `    ``int` `n = ``sizeof``(arr) / ``sizeof``(``int``); ` `    ``int` `x = 6; ` ` `  `    ``cout << findCnt(arr, 0, x, n); ` ` `  `    ``return` `0; ` `} `

## Java

 `// Java implementation of the approach ` `import` `java.util.*; ` ` `  `class` `GFG  ` `{ ` `static` `int` `maxN = ``20``; ` `static` `int` `maxSum = ``50``; ` `static` `int` `minSum = ``50``; ` `static` `int` `base = ``50``; ` ` `  `// To store the states of DP ` `static` `int` `[][]dp = ``new` `int``[maxN][maxSum + minSum]; ` `static` `boolean` `[][]v = ``new` `boolean``[maxN][maxSum + minSum]; ` ` `  `// Function to return the required count ` `static` `int` `findCnt(``int` `[]arr, ``int` `i,  ` `                   ``int` `required_sum, ``int` `n) ` `{ ` `    ``// Base case ` `    ``if` `(i == n)  ` `    ``{ ` `        ``if` `(required_sum == ``0``) ` `            ``return` `1``; ` `        ``else` `            ``return` `0``; ` `    ``} ` ` `  `    ``// If the state has been solved before ` `    ``// return the value of the state ` `    ``if` `(v[i][required_sum + base]) ` `        ``return` `dp[i][required_sum + base]; ` ` `  `    ``// Setting the state as solved ` `    ``v[i][required_sum + base] = ``true``; ` ` `  `    ``// Recurrence relation ` `    ``dp[i][required_sum + base] =  ` `          ``findCnt(arr, i + ``1``, required_sum, n) +  ` `          ``findCnt(arr, i + ``1``, required_sum - arr[i], n); ` `    ``return` `dp[i][required_sum + base]; ` `} ` ` `  `// Driver code ` `public` `static` `void` `main(String []args)  ` `{ ` `    ``int` `arr[] = { ``3``, ``3``, ``3``, ``3` `}; ` `    ``int` `n = arr.length; ` `    ``int` `x = ``6``; ` ` `  `    ``System.out.println(findCnt(arr, ``0``, x, n)); ` `} ` `} ` ` `  `// This code is contributed by 29AjayKumar `

## Python3

 `# Python3 implementation of the approach  ` `import` `numpy as np ` ` `  `maxN ``=` `20` `maxSum ``=` `50` `minSum ``=` `50` `base ``=` `50` ` `  `# To store the states of DP  ` `dp ``=` `np.zeros((maxN, maxSum ``+` `minSum));  ` `v ``=` `np.zeros((maxN, maxSum ``+` `minSum));  ` ` `  `# Function to return the required count  ` `def` `findCnt(arr, i, required_sum, n) : ` ` `  `    ``# Base case  ` `    ``if` `(i ``=``=` `n) : ` `        ``if` `(required_sum ``=``=` `0``) : ` `            ``return` `1``;  ` `        ``else` `: ` `            ``return` `0``;  ` ` `  `    ``# If the state has been solved before  ` `    ``# return the value of the state  ` `    ``if` `(v[i][required_sum ``+` `base]) : ` `        ``return` `dp[i][required_sum ``+` `base];  ` ` `  `    ``# Setting the state as solved  ` `    ``v[i][required_sum ``+` `base] ``=` `1``;  ` ` `  `    ``# Recurrence relation  ` `    ``dp[i][required_sum ``+` `base] ``=` `findCnt(arr, i ``+` `1``,  ` `                                         ``required_sum, n) ``+` `\ ` `                                 ``findCnt(arr, i ``+` `1``,  ` `                                         ``required_sum ``-` `arr[i], n);  ` `     `  `    ``return` `dp[i][required_sum ``+` `base];  ` ` `  `# Driver code  ` `if` `__name__ ``=``=` `"__main__"` `:  ` ` `  `    ``arr ``=` `[ ``3``, ``3``, ``3``, ``3` `];  ` `    ``n ``=` `len``(arr);  ` `    ``x ``=` `6``;  ` ` `  `    ``print``(findCnt(arr, ``0``, x, n));  ` ` `  `# This code is contributed by AnkitRai01 `

## C#

 `// C# implementation of the approach ` `using` `System; ` `     `  `class` `GFG  ` `{ ` ` `  `static` `int` `maxN = 20; ` `static` `int` `maxSum = 50; ` `static` `int` `minSum = 50; ` `static` `int` `Base = 50; ` ` `  `// To store the states of DP ` `static` `int` `[,]dp = ``new` `int``[maxN, maxSum + minSum]; ` `static` `Boolean [,]v = ``new` `Boolean[maxN, maxSum + minSum]; ` ` `  `// Function to return the required count ` `static` `int` `findCnt(``int` `[]arr, ``int` `i,  ` `                   ``int` `required_sum, ``int` `n) ` `{ ` `    ``// Base case ` `    ``if` `(i == n)  ` `    ``{ ` `        ``if` `(required_sum == 0) ` `            ``return` `1; ` `        ``else` `            ``return` `0; ` `    ``} ` ` `  `    ``// If the state has been solved before ` `    ``// return the value of the state ` `    ``if` `(v[i, required_sum + Base]) ` `        ``return` `dp[i, required_sum + Base]; ` ` `  `    ``// Setting the state as solved ` `    ``v[i, required_sum + Base] = ``true``; ` ` `  `    ``// Recurrence relation ` `    ``dp[i, required_sum + Base] =  ` `          ``findCnt(arr, i + 1, required_sum, n) +  ` `          ``findCnt(arr, i + 1, required_sum - arr[i], n); ` `    ``return` `dp[i,required_sum + Base]; ` `} ` ` `  `// Driver code ` `public` `static` `void` `Main(String []args)  ` `{ ` `    ``int` `[]arr = { 3, 3, 3, 3 }; ` `    ``int` `n = arr.Length; ` `    ``int` `x = 6; ` ` `  `    ``Console.WriteLine(findCnt(arr, 0, x, n)); ` `} ` `} ` ` `  `// This code is contributed by 29AjayKumar `

Output:

```6
```

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.

My Personal Notes arrow_drop_up Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.

Improved By : AnkitRai01, 29AjayKumar