Related Articles

# Search in a row wise and column wise sorted matrix

• Difficulty Level : Medium
• Last Updated : 24 May, 2021

Given an n x n matrix and a number x, find the position of x in the matrix if it is present in it. Otherwise, print “Not Found”. In the given matrix, every row and column is sorted in increasing order. The designed algorithm should have linear time complexity.

Example:

```Input: mat = { {10, 20, 30, 40},
{15, 25, 35, 45},
{27, 29, 37, 48},
{32, 33, 39, 50}};
x = 29
Output: Found at (2, 1)
Explanation: Element at (2,1) is 29

Input : mat = { {10, 20, 30, 40},
{15, 25, 35, 45},
{27, 29, 37, 48},
{32, 33, 39, 50}};
x = 100

Simple Solution

• Approach: The simple idea is to traverse the array and to search elements one by one.
• Algorithm:
1. Run a nested loop, outer loop for row and inner loop for the column
2. Check every element with x and if the element is found then print “element found”
• Implementation:

## CPP14

 `// C++ program to search an element in row-wise``// and column-wise sorted matrix``#include `` ` `using` `namespace` `std;`` ` `/* Searches the element x in mat[][]. If the``element is found, then prints its position``and returns true, otherwise prints "not found"``and returns false */``int` `search(``int` `mat, ``int` `n, ``int` `x)``{``    ``if` `(n == 0)``        ``return` `-1;``    ` `    ``//traverse through the matrix``    ``for``(``int` `i = 0; i < n; i++)``    ``{``        ``for``(``int` `j = 0; j < n; j++)``        ``//if the element is found``        ``if``(mat[i][j] == x)``        ``{``            ``cout<<``"Element found at ("``<<``                        ``i << ``", "` `<< j << ``")\n"``;``            ``return` `1;``        ``}``    ``}`` ` `    ``cout << ``"n Element not found"``;``    ``return` `0;``}`` ` `// Driver code``int` `main()``{``    ``int` `mat = { { 10, 20, 30, 40 },``                      ``{ 15, 25, 35, 45 },``                      ``{ 27, 29, 37, 48 },``                      ``{ 32, 33, 39, 50 } };``    ``search(mat, 4, 29);`` ` `    ``return` `0;``}`

## Java

 `// Java program to search an element in row-wise``// and column-wise sorted matrix` `class` `GFG {``  ``static` `int` `search(``int``[][] mat, ``int` `n, ``int` `x)``  ``{``    ``if` `(n == ``0``)``      ``return` `-``1``;` `    ``// traverse through the matrix``    ``for` `(``int` `i = ``0``; i < n; i++) {``      ``for` `(``int` `j = ``0``; j < n; j++)``        ``// if the element is found``        ``if` `(mat[i][j] == x) {``          ``System.out.print(``"Element found at ("``                           ``+ i + ``", "` `+ j``                           ``+ ``")\n"``);``          ``return` `1``;``        ``}``    ``}` `    ``System.out.print(``" Element not found"``);``    ``return` `0``;``  ``}``  ``public` `static` `void` `main(String[] args)``  ``{``    ``int` `mat[][] = { { ``10``, ``20``, ``30``, ``40` `},``                   ``{ ``15``, ``25``, ``35``, ``45` `},``                   ``{ ``27``, ``29``, ``37``, ``48` `},``                   ``{ ``32``, ``33``, ``39``, ``50` `} };` `    ``search(mat, ``4``, ``29``);``  ``}``}`

## Python3

 `# Python program to search an element in row-wise``# and column-wise sorted matrix` `# Searches the element x in mat[][]. If the``# element is found, then prints its position``# and returns true, otherwise prints "not found"``# and returns false``def` `search(mat, n, x):``    ``if``(n ``=``=` `0``):``        ``return` `-``1``    ` `    ``# Traverse through the matrix  ``    ``for` `i ``in` `range``(n):``        ``for` `j ``in` `range``(n):``            ` `            ``# If the element is found``            ``if``(mat[i][j] ``=``=` `x):``                ``print``(``"Element found at ("``, i, ``","``, j, ``")"``)``                ``return` `1``    ` `    ``print``(``" Element not found"``)``    ``return` `0` `# Driver code``mat ``=` `[[``10``, ``20``, ``30``, ``40``], [``15``, ``25``, ``35``, ``45``],[``27``, ``29``, ``37``, ``48``],[``32``, ``33``, ``39``, ``50``]]``search(mat, ``4``, ``29``)` `# This code is contributed by rag2127`

## C#

 `// C# program to search an element in row-wise``// and column-wise sorted matrix``using` `System;` `class` `GFG{` `/* Searches the element x in mat[][]. If the``element is found, then prints its position``and returns true, otherwise prints "not found"``and returns false */`  `static` `int` `search(``int``[,] mat, ``int` `n, ``int` `x)``{``    ``if` `(n == 0)``        ``return` `-1;``    ` `    ``// Traverse through the matrix``    ``for``(``int` `i = 0; i < n; i++)``    ``{``        ``for``(``int` `j = 0; j < n; j++)``        ` `        ``// If the element is found``        ``if` `(mat[i,j] == x)``        ``{``            ``Console.Write(``"Element found at ("` `+ i +``                          ``", "` `+ j + ``")\n"``);``            ``return` `1;``        ``}``    ``}``    ``Console.Write(``" Element not found"``);``    ``return` `0;``}` `// Driver code``static` `public` `void` `Main()``{``    ``int``[,] mat = { { 10, 20, 30, 40 },``                   ``{ 15, 25, 35, 45 },``                   ``{ 27, 29, 37, 48 },``                   ``{ 32, 33, 39, 50 } };``                   ` `    ``search(mat, 4, 29);``}``}` `// This code is contributed by avanitrachhadiya2155`

## Javascript

 ``
Output
`Element found at (2, 1)`

A better solution is use Divide and Conquer to find the element which has a time complexity of O(n1.58). Please refer here for details.

Efficient Solution

• Approach: The simple idea is to remove a row or column in each comparison until an element is found. Start searching from the top-right corner of the matrix. There are three possible cases.
1. The given number is greater than the current number: This will ensure that all the elements in the current row are smaller than the given number as the pointer is already at the right-most elements and the row is sorted. Thus, the entire row gets eliminated and continues the search for the next row. Here, elimination means that a row needs not be searched.
2. The given number is smaller than the current number: This will ensure that all the elements in the current column are greater than the given number. Thus, the entire column gets eliminated and continues the search for the previous column, i.e. the column on the immediate left.
3. The given number is equal to the current number: This will end the search.
• Algorithm:
1. Let the given element be x, create two variable i = 0, j = n-1 as index of row and column
2. Run a loop until i = 0
3. Check if the current element is greater than x then decrease the count of j. Exclude the current column.
4. Check if the current element is less than x then increase the count of i. Exclude the current row.
5. If the element is equal, then print the position and end.
• Thanks to devendraiiit for suggesting the approach below.
• Implementation:

## C++

 `// C++ program to search an element in row-wise``// and column-wise sorted matrix``#include ` `using` `namespace` `std;` `/* Searches the element x in mat[][]. If the``element is found, then prints its position``and returns true, otherwise prints "not found"``and returns false */``int` `search(``int` `mat, ``int` `n, ``int` `x)``{``    ``if` `(n == 0)``        ``return` `-1;``  ` `    ``int` `smallest = mat, largest = mat[n - 1][n - 1];``    ``if` `(x < smallest || x > largest)``        ``return` `-1;``  ` `    ``// set indexes for top right element``    ``int` `i = 0, j = n - 1;``    ``while` `(i < n && j >= 0)``    ``{``        ``if` `(mat[i][j] == x)``        ``{``            ``cout << ``"n Found at "``                 ``<< i << ``", "` `<< j;``            ``return` `1;``        ``}``        ``if` `(mat[i][j] > x)``            ``j--;``      ` `        ``// Check if mat[i][j] < x``        ``else``            ``i++;``    ``}` `    ``cout << ``"n Element not found"``;``    ``return` `0;``}` `// Driver code``int` `main()``{``    ``int` `mat = { { 10, 20, 30, 40 },``                      ``{ 15, 25, 35, 45 },``                      ``{ 27, 29, 37, 48 },``                      ``{ 32, 33, 39, 50 } };``    ``search(mat, 4, 29);` `    ``return` `0;``}` `// This code is contributed``// by Akanksha Rai(Abby_akku)`

## C

 `// C program to search an element in row-wise``// and column-wise sorted matrix``#include ` `/* Searches the element x in mat[][]. If the``element is found, then prints its position``and returns true, otherwise prints "not found"``and returns false */``int` `search(``int` `mat, ``int` `n, ``int` `x)``{``    ``if` `(n == 0)``        ``return` `-1;``    ``int` `smallest = mat, largest = mat[n - 1][n - 1];``    ``if` `(x < smallest || x > largest)``        ``return` `-1;``  ` `    ``// set indexes for top right element``    ``int` `i = 0, j = n - 1;``    ``while` `(i < n && j >= 0)``    ``{``        ``if` `(mat[i][j] == x)``        ``{``            ``printf``(``"\n Found at %d, %d"``, i, j);``            ``return` `1;``        ``}``        ``if` `(mat[i][j] > x)``            ``j--;``        ``else` `// if mat[i][j] < x``            ``i++;``    ``}` `    ``printf``(``"n Element not found"``);``    ``return` `0; ``// if ( i==n || j== -1 )``}` `// driver program to test above function``int` `main()``{``    ``int` `mat = {``        ``{ 10, 20, 30, 40 },``        ``{ 15, 25, 35, 45 },``        ``{ 27, 29, 37, 48 },``        ``{ 32, 33, 39, 50 },``    ``};``    ``search(mat, 4, 29);``    ``return` `0;``}`

## Java

 `// JAVA Code for Search in a row wise and``// column wise sorted matrix` `class` `GFG {` `    ``/* Searches the element x in mat[][]. If the``    ``element is found, then prints its position``    ``and returns true, otherwise prints "not found"``    ``and returns false */``    ``private` `static` `void` `search(``int``[][] mat,``                                    ``int` `n, ``int` `x)``    ``{``        ` `        ``// set indexes for top right``        ``int` `i = ``0``, j = n - ``1``;``        ``// element` `        ``while` `(i < n && j >= ``0``)``        ``{``            ``if` `(mat[i][j] == x)``            ``{``                ``System.out.print(``"n Found at "` `+``                                    ``i + ``" "` `+ j);``                ``return``;``            ``}``            ``if` `(mat[i][j] > x)``                ``j--;``            ``else` `// if mat[i][j] < x``                ``i++;``        ``}` `        ``System.out.print(``"n Element not found"``);``        ``return``; ``// if ( i==n || j== -1 )``    ``}``    ``// driver program to test above function``    ``public` `static` `void` `main(String[] args)``    ``{``        ``int` `mat[][] = { { ``10``, ``20``, ``30``, ``40` `},``                        ``{ ``15``, ``25``, ``35``, ``45` `},``                        ``{ ``27``, ``29``, ``37``, ``48` `},``                        ``{ ``32``, ``33``, ``39``, ``50` `} };` `        ``search(mat, ``4``, ``29``);``    ``}``}``// This code is contributed by Arnav Kr. Mandal.`

## Python3

 `# Python3 program to search an element``# in row-wise and column-wise sorted matrix` `# Searches the element x in mat[][]. If the``# element is found, then prints its position``# and returns true, otherwise prints "not found"``# and returns false``def` `search(mat, n, x):` `    ``i ``=` `0``    ` `    ``# set indexes for top right element``    ``j ``=` `n ``-` `1``    ``while` `( i < n ``and` `j >``=` `0` `):``    ` `        ``if` `(mat[i][j] ``=``=` `x ):``    ` `            ``print``(``"n Found at "``, i, ``", "``, j)``            ``return` `1``    ` `        ``if` `(mat[i][j] > x ):``            ``j ``-``=` `1``            ` `        ``# if mat[i][j] < x``        ``else``:``            ``i ``+``=` `1``    ` `    ``print``(``"Element not found"``)``    ``return` `0` `# if (i == n || j == -1 )` `# Driver Code``mat ``=` `[ [``10``, ``20``, ``30``, ``40``],``        ``[``15``, ``25``, ``35``, ``45``],``        ``[``27``, ``29``, ``37``, ``48``],``        ``[``32``, ``33``, ``39``, ``50``] ]``search(mat, ``4``, ``29``)` `# This code is contributed by Anant Agarwal.`

## C#

 `// C# Code for Search in a row wise and``// column wise sorted matrix``using` `System;` `class` `GFG``{``    ``/* Searches the element x in mat[][]. If the``    ``element is found, then prints its position``    ``and returns true, otherwise prints "not found"``    ``and returns false */``    ``private` `static` `void` `search(``int``[, ] mat,``                               ``int` `n, ``int` `x)``    ``{``        ``// set indexes for top right``        ``// element``        ``int` `i = 0, j = n - 1;` `        ``while` `(i < n && j >= 0)``        ``{``            ``if` `(mat[i, j] == x)``            ``{``                ``Console.Write(``"n Found at "``                              ``+ i + ``", "` `+ j);``                ``return``;``            ``}` `            ``if` `(mat[i, j] > x)``                ``j--;``            ``else` `// if mat[i][j] < x``                ``i++;``        ``}` `        ``Console.Write(``"n Element not found"``);``        ``return``; ``// if ( i==n || j== -1 )``    ``}``    ``// driver program to test above function``    ``public` `static` `void` `Main()``    ``{` `        ``int``[, ] mat = { { 10, 20, 30, 40 },``                        ``{ 15, 25, 35, 45 },``                        ``{ 27, 29, 37, 48 },``                        ``{ 32, 33, 39, 50 } };` `        ``search(mat, 4, 29);``    ``}``}` `// This code is contributed by Sam007`

## PHP

 `= 0)``    ``{``        ``if` `(``\$mat``[``\$i``][``\$j``] == ``\$x``)``        ``{``            ``echo` `"n found at "` `. ``\$i``.``                        ``", "` `. ``\$j``;``            ``return` `1;``        ``}``        ``if` `(``\$mat``[``\$i``][``\$j``] > ``\$x``)``            ``\$j``--;``        ``else` `// if \$mat[\$i][\$j] < \$x``            ``\$i``++;``    ``}``    ` `    ``echo` `"n Element not found"``;``    ``return` `0; ``// if ( \$i==\$n || \$j== -1 )``}` `// Driver Code``\$mat` `= ``array``(``array``(10, 20, 30, 40),``            ``array``(15, 25, 35, 45),``            ``array``(27, 29, 37, 48),``            ``array``(32, 33, 39, 50));``search(``\$mat``, 4, 29);` `// This code is contributed``// by ChitraNayal``?>`

## Javascript

 ``
Output
`n Found at 2, 1`

Time Complexity: O(n).
Only one traversal is needed, i.e, i from 0 to n and j from n-1 to 0 with at most 2*n steps.
The above approach will also work for m x n matrix (not only for n x n). Complexity would be O(m + n).
Space Complexity: O(1).
No extra space is required.

Related Article :
Search element in a sorted matrix
Please write comments if you find the above codes/algorithms incorrect, or find other ways to solve the same problem.

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.

My Personal Notes arrow_drop_up