Print all elements in sorted order from row and column wise sorted matrix
Given an n x n matrix, where every row and column is sorted in non-decreasing order. Print all elements of the matrix in sorted order.
Example:
Input: mat[][] = { {10, 20, 30, 40},
{15, 25, 35, 45},
{27, 29, 37, 48},
{32, 33, 39, 50},
};
Output: 10 15 20 25 27 29 30 32 33 35 37 39 40 45 48 50
We can use Young Tableau to solve the above problem. The idea is to consider the given 2D array as Young Tableau and call extract minimum O(N)
Algorithm:
- Define a constant INF equal to INT_MAX and N equal to the size of the matrix.
- Implement a youngify function that takes a 2D matrix and two integer values i and j as input parameters.
- In the youngify function, find the values at the down and right sides of mat[i][j].
- If mat[i][j] is the down right corner element, then return.
- Move the smaller of two values (downVal and rightVal) to mat[i][j] and recursively call youngify for the smaller value.
- Implement an extractMin function that takes a 2D matrix as an input parameter.
- In the extractMin function, store the value at mat[0][0] in a variable ret and update mat[0][0] with INF.
- Recursively call youngify with the starting cell (0, 0).
- Return the value stored in ret.
- Implement a printSorted function that takes a 2D matrix as an input parameter.
- Iterate N*N times and call extractMin each time and print the returned value.
- Implement the main function.
- Declare a 2D matrix mat of size NxN and initialize it with values.
- Call the printSorted function with mat as an input parameter.
- Return 0
Below is the implementation of this approach:
C++
// A C++ program to Print all elements in sorted order from row and // column wise sorted matrix #include<iostream> #include<climits> using namespace std; #define INF INT_MAX #define N 4 // A utility function to youngify a Young Tableau. This is different // from standard youngify. It assumes that the value at mat[0][0] is // infinite. void youngify( int mat[][N], int i, int j) { // Find the values at down and right sides of mat[i][j] int downVal = (i+1 < N)? mat[i+1][j]: INF; int rightVal = (j+1 < N)? mat[i][j+1]: INF; // If mat[i][j] is the down right corner element, return if (downVal==INF && rightVal==INF) return ; // Move the smaller of two values (downVal and rightVal) to // mat[i][j] and recur for smaller value if (downVal < rightVal) { mat[i][j] = downVal; mat[i+1][j] = INF; youngify(mat, i+1, j); } else { mat[i][j] = rightVal; mat[i][j+1] = INF; youngify(mat, i, j+1); } } // A utility function to extract minimum element from Young tableau int extractMin( int mat[][N]) { int ret = mat[0][0]; mat[0][0] = INF; youngify(mat, 0, 0); return ret; } // This function uses extractMin() to print elements in sorted order void printSorted( int mat[][N]) { for ( int i=0; i<N*N; i++) cout << extractMin(mat) << " " ; } // driver program to test above function int main() { int mat[N][N] = { {10, 20, 30, 40}, {15, 25, 35, 45}, {27, 29, 37, 48}, {32, 33, 39, 50}, }; printSorted(mat); return 0; } |
Java
// A Java program to Print all elements // in sorted order from row and // column wise sorted matrix import java.io.*; public class GFG { static final int INF = Integer.MAX_VALUE; static final int N = 4 ; // A utility function to youngify a Young Tableau. // This is different from standard youngify. // It assumes that the value at mat[0][0] is infinite. static void youngify( int mat[][], int i, int j) { // Find the values at down and right sides of mat[i][j] int downVal = (i + 1 < N) ? mat[i + 1 ][j] : INF; int rightVal = (j + 1 < N) ? mat[i][j + 1 ] : INF; // If mat[i][j] is the down right corner element, // return if (downVal == INF && rightVal == INF) { return ; } // Move the smaller of two values // (downVal and rightVal) to mat[i][j] // and recur for smaller value if (downVal < rightVal) { mat[i][j] = downVal; mat[i + 1 ][j] = INF; youngify(mat, i + 1 , j); } else { mat[i][j] = rightVal; mat[i][j + 1 ] = INF; youngify(mat, i, j + 1 ); } } // A utility function to extract // minimum element from Young tableau static int extractMin( int mat[][]) { int ret = mat[ 0 ][ 0 ]; mat[ 0 ][ 0 ] = INF; youngify(mat, 0 , 0 ); return ret; } // This function uses extractMin() // to print elements in sorted order static void printSorted( int mat[][]) { System.out.println( "Elements of matrix in sorted order n" ); for ( int i = 0 ; i < N * N; i++) { System.out.print(extractMin(mat) + " " ); } } // Driver Code public static void main(String args[]) { int mat[][] = {{ 10 , 20 , 30 , 40 }, { 15 , 25 , 35 , 45 }, { 27 , 29 , 37 , 48 }, { 32 , 33 , 39 , 50 }}; printSorted(mat); } } // This code is contributed by Rajput-Ji |
Python3
# Python 3 program to Print all elements # in sorted order from row and column # wise sorted matrix import sys INF = sys.maxsize N = 4 # A utility function to youngify a Young # Tableau. This is different from standard # youngify. It assumes that the value at # mat[0][0] is infinite. def youngify(mat, i, j): # Find the values at down and # right sides of mat[i][j] downVal = mat[i + 1 ][j] if (i + 1 < N) else INF rightVal = mat[i][j + 1 ] if (j + 1 < N) else INF # If mat[i][j] is the down right # corner element, return if (downVal = = INF and rightVal = = INF): return # Move the smaller of two values # (downVal and rightVal) to mat[i][j] # and recur for smaller value if (downVal < rightVal): mat[i][j] = downVal mat[i + 1 ][j] = INF youngify(mat, i + 1 , j) else : mat[i][j] = rightVal mat[i][j + 1 ] = INF youngify(mat, i, j + 1 ) # A utility function to extract minimum # element from Young tableau def extractMin(mat): ret = mat[ 0 ][ 0 ] mat[ 0 ][ 0 ] = INF youngify(mat, 0 , 0 ) return ret # This function uses extractMin() to # print elements in sorted order def printSorted(mat): print ( "Elements of matrix in sorted order n" ) i = 0 while i < N * N: print (extractMin(mat), end = " " ) i + = 1 # Driver Code if __name__ = = "__main__" : mat = [[ 10 , 20 , 30 , 40 ], [ 15 , 25 , 35 , 45 ], [ 27 , 29 , 37 , 48 ], [ 32 , 33 , 39 , 50 ]] printSorted(mat) # This code is contributed by ita_c |
C#
// A C# program to Print all elements // in sorted order from row and // column wise sorted matrix using System; class GFG { static int INF = int .MaxValue; static int N = 4; // A utility function to youngify a Young Tableau. // This is different from standard youngify. // It assumes that the value at mat[0][0] is infinite. static void youngify( int [,]mat, int i, int j) { // Find the values at down and right sides of mat[i][j] int downVal = (i + 1 < N) ? mat[i + 1,j] : INF; int rightVal = (j + 1 < N) ? mat[i,j + 1] : INF; // If mat[i][j] is the down right corner element, // return if (downVal == INF && rightVal == INF) { return ; } // Move the smaller of two values // (downVal and rightVal) to mat[i][j] // and recur for smaller value if (downVal < rightVal) { mat[i,j] = downVal; mat[i + 1,j] = INF; youngify(mat, i + 1, j); } else { mat[i, j] = rightVal; mat[i, j + 1] = INF; youngify(mat, i, j + 1); } } // A utility function to extract // minimum element from Young tableau static int extractMin( int [,]mat) { int ret = mat[0,0]; mat[0, 0] = INF; youngify(mat, 0, 0); return ret; } // This function uses extractMin() // to print elements in sorted order static void printSorted( int [,]mat) { Console.WriteLine( "Elements of matrix in sorted order n" ); for ( int i = 0; i < N * N; i++) { Console.Write(extractMin(mat) + " " ); } } // Driver Code static public void Main () { int [,]mat = {{10, 20, 30, 40}, {15, 25, 35, 45}, {27, 29, 37, 48}, {32, 33, 39, 50}}; printSorted(mat); } } // This code is contributed by ajit. |
Javascript
<script> // A Javascript program to Print all elements // in sorted order from row and // column wise sorted matrix let INF = Number.MAX_VALUE; let N = 4; // A utility function to youngify a Young Tableau. // This is different from standard youngify. // It assumes that the value at mat[0][0] is infinite. function youngify(mat,i,j) { // Find the values at down and right sides of mat[i][j] let downVal = (i + 1 < N) ? mat[i + 1][j] : INF; let rightVal = (j + 1 < N) ? mat[i][j + 1] : INF; // If mat[i][j] is the down right corner element, // return if (downVal == INF && rightVal == INF) { return ; } // Move the smaller of two values // (downVal and rightVal) to mat[i][j] // and recur for smaller value if (downVal < rightVal) { mat[i][j] = downVal; mat[i + 1][j] = INF; youngify(mat, i + 1, j); } else { mat[i][j] = rightVal; mat[i][j + 1] = INF; youngify(mat, i, j + 1); } } // A utility function to extract // minimum element from Young tableau function extractMin(mat) { let ret = mat[0][0]; mat[0][0] = INF; youngify(mat, 0, 0); return ret; } // This function uses extractMin() // to print elements in sorted order function printSorted(mat) { document.write( "Elements of matrix in sorted order n<br>" ); for (let i = 0; i < N * N; i++) { document.write(extractMin(mat) + " " ); } } let mat=[[10, 20, 30, 40],[15, 25, 35, 45], [27, 29, 37, 48],[32, 33, 39, 50]]; printSorted(mat); // This code is contributed by avanitrachhadiya2155 </script> |
10 15 20 25 27 29 30 32 33 35 37 39 40 45 48 50
Time complexity of extract minimum is O(N) and it is called O(N2) times. Therefore the overall time complexity is O(N3).
Auxiliary Space: O(N2)
Another approach: The idea is to keep all elements of the matrix in a one-dimensional array and then sort the array and print all values in it.
Below is the implementation of the above approach:
C++
#include <bits/stdc++.h> using namespace std; // Function to print all elements of matrix in sorted orderd void sortedMatrix( int N, vector<vector< int > > Mat) { vector< int > temp; // Store all elements of matrix into temp for ( int i = 0; i < N; i++) { for ( int j = 0; j < N; j++) { temp.push_back(Mat[i][j]); } } // Sort the temp sort(temp.begin(), temp.end()); // Print the values of temp for ( int i = 0; i < temp.size(); i++) { cout << temp[i] << " " ; } } int main() { int N = 4; vector<vector< int > > Mat = { { 10, 20, 30, 40 }, { 15, 25, 35, 45 }, { 27, 29, 37, 48 }, { 32, 33, 39, 50 }, }; sortedMatrix(N, Mat); return 0; } // This code is contributed by pratiknawale999 |
Java
// A Java program to Print all elements // in sorted order from row and // column wise sorted matrix import java.io.*; import java.util.*; class GFG { // Function to print all elements of matrix in sorted orderd static void sortedMatrix( int N, int [][] mat) { List<Integer> temp = new ArrayList<Integer>(); // Store all elements of matrix into temp for ( int i = 0 ; i < N; i++) { for ( int j = 0 ; j < N; j++) { temp.add(mat[i][j]); } } // Sort the temp Collections.sort(temp); // Print the values of temp for ( int i = 0 ; i < temp.size(); i++) { System.out.print(temp.get(i)+ " " ); } } public static void main (String[] args) { int N = 4 ; int mat[][] = {{ 10 , 20 , 30 , 40 }, { 15 , 25 , 35 , 45 }, { 27 , 29 , 37 , 48 }, { 32 , 33 , 39 , 50 }}; sortedMatrix(N,mat); } } // This code is contributed by shruti456rawal |
Python3
# Function to print all elements of matrix in sorted orderd def sortedMatrix(N, Mat): temp = [] # Store all elements of matrix into temp for i in range ( 0 , N): for j in range ( 0 , N): temp.append(Mat[i][j]) # Sort the temp temp.sort() # Print the values of temp for i in range ( len (temp)): print (temp[i], end = ' ' ) if __name__ = = "__main__" : N = 4 Mat = [[ 10 , 20 , 30 , 40 ], [ 15 , 25 , 35 , 45 ], [ 27 , 29 , 37 , 48 ], [ 32 , 33 , 39 , 50 ]] sortedMatrix(N, list (Mat)) # This code is contributed by Aarti_Rathi |
C#
using System; using System.Collections.Generic; public static class GFG { // Function to print all elements of matrix in sorted // orderd static void sortedMatrix( int N, List<List< int > > Mat) { List< int > temp = new List< int >(); // Store all elements of matrix into temp for ( int i = 0; i < N; i++) { for ( int j = 0; j < N; j++) { temp.Add(Mat[i][j]); } } // Sort the temp temp.Sort(); // Print the values of temp for ( int i = 0; i < temp.Count; i++) { Console.Write(temp[i]); Console.Write( " " ); } } public static void Main() { int N = 4; List<List< int > > Mat = new List<List< int > >() { new List< int >{ 10, 20, 30, 40 }, new List< int >{ 15, 25, 35, 45 }, new List< int >{ 27, 29, 37, 48 }, new List< int > { 32, 33, 39, 50 } }; sortedMatrix(N, new List<List< int > >(Mat)); } // This code is contributed by Aarti_Rathi } |
Javascript
// A JavaScript program to Print all elements // in sorted order from row and // column wise sorted matrix // Function to print all elements of matrix in sorted orderd function sortedMatrix(N, mat) { var temp = []; // Store all elements of matrix into temp for ( var i=0; i < N; i++) { for ( var j=0; j < N; j++) { (temp.push(mat[i][j])); } } // Sort the temp temp.sort(); // Print the values of temp for ( var i =0; i < temp.length; i++) { console.log(temp[i] + " " ); } } var N = 4; var mat = [[10, 20, 30, 40], [15, 25, 35, 45], [27, 29, 37, 48], [32, 33, 39, 50]]; sortedMatrix(N, mat); // This code is contributed by Aarti_Rathi |
10 15 20 25 27 29 30 32 33 35 37 39 40 45 48 50
Time Complexity: O(N2log(N2))
Auxiliary Space: O(N2)
A better solution is to use the approach used for merging k sorted arrays. The idea is to use a Min Heap of size N which stores elements of first column. They do extract minimum. In extract minimum, replace the minimum element with the next element of the row from which the element is extracted.
C++
// C++ program to merge k sorted arrays of size n each. #include<iostream> #include<climits> using namespace std; #define N 4 // A min heap node struct MinHeapNode { int element; // The element to be stored int i; // index of the row from which the element is taken int j; // index of the next element to be picked from row }; // Prototype of a utility function to swap two min heap nodes void swap(MinHeapNode *x, MinHeapNode *y); // A class for Min Heap class MinHeap { MinHeapNode *harr; // pointer to array of elements in heap int heap_size; // size of min heap public : // Constructor: creates a min heap of given size MinHeap(MinHeapNode a[], int size); // to heapify a subtree with root at given index void MinHeapify( int ); // to get index of left child of node at index i int left( int i) { return (2*i + 1); } // to get index of right child of node at index i int right( int i) { return (2*i + 2); } // to get the root MinHeapNode getMin() { return harr[0]; } // to replace root with new node x and heapify() new root void replaceMin(MinHeapNode x) { harr[0] = x; MinHeapify(0); } }; // This function prints elements of a given matrix in non-decreasing // order. It assumes that ma[][] is sorted row wise sorted. void printSorted( int mat[][N]) { // Create a min heap with k heap nodes. Every heap node // has first element of an array MinHeapNode *harr = new MinHeapNode[N]; for ( int i = 0; i < N; i++) { harr[i].element = mat[i][0]; // Store the first element harr[i].i = i; // index of row harr[i].j = 1; // Index of next element to be stored from row } MinHeap hp(harr, N); // Create the min heap // Now one by one get the minimum element from min // heap and replace it with next element of its array for ( int count = 0; count < N*N; count++) { // Get the minimum element and store it in output MinHeapNode root = hp.getMin(); cout << root.element << " " ; // Find the next element that will replace current // root of heap. The next element belongs to same // array as the current root. if (root.j < N) { root.element = mat[root.i][root.j]; root.j += 1; } // If root was the last element of its array else root.element = INT_MAX; //INT_MAX is for infinite // Replace root with next element of array hp.replaceMin(root); } } // FOLLOWING ARE IMPLEMENTATIONS OF STANDARD MIN HEAP METHODS // FROM CORMEN BOOK // Constructor: Builds a heap from a given array a[] of given size MinHeap::MinHeap(MinHeapNode a[], int size) { heap_size = size; harr = a; // store address of array int i = (heap_size - 1)/2; while (i >= 0) { MinHeapify(i); i--; } } // A recursive method to heapify a subtree with root at given index // This method assumes that the subtrees are already heapified void MinHeap::MinHeapify( int i) { int l = left(i); int r = right(i); int smallest = i; if (l < heap_size && harr[l].element < harr[i].element) smallest = l; if (r < heap_size && harr[r].element < harr[smallest].element) smallest = r; if (smallest != i) { swap(&harr[i], &harr[smallest]); MinHeapify(smallest); } } // A utility function to swap two elements void swap(MinHeapNode *x, MinHeapNode *y) { MinHeapNode temp = *x; *x = *y; *y = temp; } // driver program to test above function int main() { int mat[N][N] = { {10, 20, 30, 40}, {15, 25, 35, 45}, {27, 29, 37, 48}, {32, 33, 39, 50}, }; printSorted(mat); return 0; } |
Python3
# Python code to merge k sorted arrays of size n each. N = 4 # A min heap node class MinHeapNode: def __init__( self , element, i, j): self .element = element # The element to be stored self .i = i # index of the row from which the element is taken self .j = j # index of the next element to be picked from row # A class for Min Heap class MinHeap: def __init__( self , a, size): self .harr = a # pointer to array of elements in heap self .heapSize = size # size of min heap # Build heap i = ( self .heapSize - 1 ) / / 2 while i > = 0 : self .minHeapify(i) i - = 1 def minHeapify( self , i): l = self .left(i) r = self .right(i) smallest = i if l < self .heapSize and self .harr[l].element < self .harr[i].element: smallest = l if r < self .heapSize and self .harr[r].element < self .harr[smallest].element: smallest = r if smallest ! = i: temp = self .harr[i] self .harr[i] = self .harr[smallest] self .harr[smallest] = temp self .minHeapify(smallest) # to get index of left child of node at index i def left( self , i): return 2 * i + 1 # to get index right child of node at index i def right( self , i): return 2 * i + 2 # to get the root def getMin( self ): return self .harr[ 0 ] # to replace root with new node x and heapify() new root def replaceMin( self , x): self .harr[ 0 ] = x self .minHeapify( 0 ) def swap(x, y): x.element, y.element = y.element, x.element # This function prints elements of a given matrix in non-decreasing # order. It assumes that ma[][] is sorted row wise sorted. def printSorted(mat): # Create a min heap with k heap nodes. Every heap node # has first element of an array harr = [MinHeapNode(mat[i][ 0 ], i, 1 ) for i in range (N)] heap = MinHeap(harr, N) # Create the min heap # Now one by one get the minimum element from min # heap and replace it with next element of its array for count in range (N * N): # Get the minimum element and store it in output root = heap.getMin() print (root.element, end = " " ) # Find the next element that will replace current # root of heap. The next element belongs to same # array as the current root. if (root.j < N): root.element = mat[root.i][root.j] root.j + = 1 # If root was the last element of its array else : root.element = float ( 'inf' ) # Replace root with next element of array heap.replaceMin(root) # Test mat = [ [ 10 , 20 , 30 , 40 ], [ 15 , 25 , 35 , 45 ], [ 27 , 29 , 37 , 48 ], [ 32 , 33 , 39 , 50 ] ] printSorted(mat) # This code is contributed by phasing17 |
Javascript
// JavaScript code to merge k sorted arrays of size n each. const N = 4; // A min heap node class MinHeapNode { constructor(element, i, j) { this .element = element; // The element to be stored this .i = i; // index of the row from which the element is taken this .j = j; // index of the next element to be picked from row } } // A class for Min Heap class MinHeap { constructor(a, size) { this .harr = a; // pointer to array of elements in heap this .heapSize = size; // size of min heap // Build heap let i = Math.floor(( this .heapSize - 1) / 2); while (i >= 0) { this .minHeapify(i); i--; } } // to heapify a subtree with root at given index minHeapify(i) { let l = this .left(i); let r = this .right(i); let smallest = i; if (l < this .heapSize && this .harr[l].element < this .harr[i].element) smallest = l; if (r < this .heapSize && this .harr[r].element < this .harr[smallest].element) smallest = r; if (smallest !== i) { let temp = this .harr[i]; this .harr[i] = this .harr[smallest]; this .harr[smallest] = temp; this .minHeapify(smallest); } } // to get index of left child of node at index i left(i) { return 2 * i + 1; } // to get index of right child of node at index i right(i) { return 2 * i + 2; } // to get the root getMin() { return this .harr[0]; } // to replace root with new node x and heapify() new root replaceMin(x) { this .harr[0] = x; this .minHeapify(0); } // Utility function to swap two elements swap(x, y) { let temp = x.element; x.element = y.element; y.element = temp; } } // This function prints elements of a given matrix in non-decreasing // order. It assumes that ma[][] is sorted row wise sorted. function printSorted(mat) { // Create a min heap with k heap nodes. Every heap node // has first element of an array let harr = new Array(N); for (let i = 0; i < N; i++) { harr[i] = new MinHeapNode(mat[i][0], i, 1); // Store the first element } let heap = new MinHeap(harr, N); // Create the min heap // Now one by one get the minimum element from min // heap and replace it with next element of its array for (let count = 0; count < N * N; count++) { // Get the minimum element and store it in output let root = heap.getMin(); console.log(root.element + " " ); // Find the next element that will replace current // root of heap. The next element belongs to same // array as the current root. if (root.j < N) { root.element = mat[root.i][root.j]; root.j += 1; } // If root was the last element of its array else root.element = Number.MAX_VALUE; //Number.MAX_VALUE is for infinite // Replace root with next element of array heap.replaceMin(root); } } // Test let mat = [ [10, 20, 30, 40], [15, 25, 35, 45], [27, 29, 37, 48], [32, 33, 39, 50] ]; printSorted(mat); // Expected output: 10 15 20 25 27 29 30 32 33 35 37 39 40 45 48 50 |
Java
import java.util.*; class MinHeapNode { int element; int i; int j; MinHeapNode( int element, int i, int j) { this .element = element; this .i = i; this .j = j; } } class MinHeap { int heapSize; MinHeapNode[] harr; MinHeap(MinHeapNode[] a, int size) { harr = a; heapSize = size; int i = (heapSize - 1 ) / 2 ; while (i >= 0 ) { minHeapify(i); i--; } } void minHeapify( int i) { int l = left(i); int r = right(i); int smallest = i; if (l < heapSize && harr[l].element < harr[i].element) { smallest = l; } if (r < heapSize && harr[r].element < harr[smallest].element) { smallest = r; } if (smallest != i) { MinHeapNode temp = harr[i]; harr[i] = harr[smallest]; harr[smallest] = temp; minHeapify(smallest); } } int left( int i) { return 2 * i + 1 ; } int right( int i) { return 2 * i + 2 ; } MinHeapNode getMin() { return harr[ 0 ]; } void replaceMin(MinHeapNode x) { harr[ 0 ] = x; minHeapify( 0 ); } } class Main { static int N = 4 ; static void printSorted( int [][] mat) { MinHeapNode[] harr = new MinHeapNode[N]; for ( int i = 0 ; i < N; i++) { harr[i] = new MinHeapNode(mat[i][ 0 ], i, 1 ); } MinHeap heap = new MinHeap(harr, N); for ( int count = 0 ; count < N * N; count++) { MinHeapNode root = heap.getMin(); System.out.print(root.element + " " ); if (root.j < N) { root.element = mat[root.i][root.j]; root.j += 1 ; } else { root.element = Integer.MAX_VALUE; } heap.replaceMin(root); } } public static void main(String[] args) { int [][] mat = { { 10 , 20 , 30 , 40 }, { 15 , 25 , 35 , 45 }, { 27 , 29 , 37 , 48 }, { 32 , 33 , 39 , 50 } }; printSorted(mat); } } // this code is added by devendrasalunke |
C#
using System; using System.Collections.Generic; // Define a class to represent a node in the min heap class MinHeapNode { public int element; // The value of the element in the node public int i; // The row index of the element in the matrix public int j; // The column index of the element in the matrix // Constructor to create a new node with the given values public MinHeapNode( int element, int i, int j) { this .element = element; this .i = i; this .j = j; } } // Define a class to represent a min heap data structure class MinHeap { public int heapSize; // The number of elements in the heap public MinHeapNode[] harr; // An array to store the heap elements // Constructor to create a new heap from the given array of nodes public MinHeap(MinHeapNode[] a, int size) { harr = a; heapSize = size; // Starting from the last non-leaf node and moving up, // apply the minHeapify operation to all nodes in the heap int i = (heapSize - 1) / 2; while (i >= 0) { minHeapify(i); i--; } } // Method to maintain the min heap property of the tree rooted at index i public void minHeapify( int i) { int l = left(i); int r = right(i); int smallest = i; // If the left child is smaller than the parent, mark it as the smallest if (l < heapSize && harr[l].element < harr[i].element) { smallest = l; } // If the right child is smaller than the smallest so far, mark it as the smallest if (r < heapSize && harr[r].element < harr[smallest].element) { smallest = r; } // If the smallest element is not the parent, swap it with the parent // and recursively apply minHeapify to the subtree rooted at the smallest element if (smallest != i) { MinHeapNode temp = harr[i]; harr[i] = harr[smallest]; harr[smallest] = temp; minHeapify(smallest); } } // Method to compute the index of the left child of a node at index i public int left( int i) { return 2 * i + 1; } // Method to compute the index of the right child of a node at index i public int right( int i) { return 2 * i + 2; } // Method to get the minimum element from the heap (i.e., the root of the tree) public MinHeapNode getMin() { return harr[0]; } // Method to replace the minimum element in the heap with a new element x, // and then restore the min heap property of the tree public void replaceMin(MinHeapNode x) { harr[0] = x; minHeapify(0); } } class Program { static int N = 4; static void printSorted( int [][] mat) { // Create a new MinHeapNode array and fill it with the first element from each row in the matrix. MinHeapNode[] harr = new MinHeapNode[N]; for ( int i = 0; i < N; i++) { harr[i] = new MinHeapNode(mat[i][0], i, 1); } // Create a new MinHeap and pass the array and its size to its constructor. MinHeap heap = new MinHeap(harr, N); // Traverse the entire matrix by looping N*N times for ( int count = 0; count < N * N; count++) { // Get the minimum element from the heap and print it MinHeapNode root = heap.getMin(); Console.Write(root.element + " " ); // If there are more elements in the row that contains the minimum element, // replace the minimum element in the heap with the next element in the row if (root.j < N) { root.element = mat[root.i][root.j]; root.j += 1; } else { // If we have reached the end of the row, replace the minimum element in the heap with infinity root.element = int .MaxValue; } // Replace the root with the new element in the heap heap.replaceMin(root); } } static void Main( string [] args) { // Initialize a 2D matrix int [][] mat = { new int []{10, 20, 30, 40}, new int []{15, 25, 35, 45}, new int []{27, 29, 37, 48}, new int []{32, 33, 39, 50} }; // Call the printSorted function with the matrix as argument printSorted(mat); } } |
10 15 20 25 27 29 30 32 33 35 37 39 40 45 48 50
Time complexity: O(N2LogN).
Auxiliary Space: O(N)
Exercise:
Above solutions work for a square matrix. Extend the above solutions to work for an M*N rectangular matrix.
This article is contributed by Varun. Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above
Please Login to comment...