# Reach the numbers by making jumps of two given lengths

Given integers k, d1, d2 and an integer array arr[]. Starting from number k you are allowed to make jumps of size d1 and d2 i.e. all the possible moves from k are:

• k + d1 and k – d1
• k + d2 and k – d2

The task is to find which of the numbers from the array are reachable from k making any number of jumps and any given jump is either of size d1 or d2. For every number print 1 if its reachable else print 0.

Examples:

Input: k = 10, d1 = 4, d2 = 6, arr[] = {10, 15, 20}
Output: 1 0 1
10 can be reached from k with no extra move.
20 can be reached with k + d1 + d2 = 10 + 4 + 6 = 20

Input: k = 8, d1 = 3, d2 = 2, arr[] = {9, 4}
Output: 1 1

## Recommended: Please try your approach on {IDE} first, before moving on to the solution.

Approach: Any number x that is reachable from k with jumps d1 or d2 will be of the form x = k + (i * d1) + (j * d2) where i and j are integers.
Let the GCD of d1 and d2 be gcd. Since, gcd divides both d1 and d2. Therefore we can write d1 = m1 * gcd and d2 = m2 * gcd where m1 and m2 are integers
And x = k + gcd * (i * m1 + j * m2) = k + M * gcd.
So, any number x that is reachable from k should satisfy (x – k) % gcd = 0.

Below is the implementation of the above approach:

## C++

 `// C++ implementation of the approach ` `#include ` `#include ` `using` `namespace` `std; ` ` `  `// Function that returns the vector containing the ` `// result for the reachability of the required numbers ` `void` `reachTheNums(``int` `nums[], ``int` `k, ``int` `d1, ``int` `d2, ``int` `n) ` `{ ` `    ``int` `i, ans[n] = { 0 }; ` `    ``int` `gcd = __gcd(d1, d2); ` ` `  `    ``for` `(i = 0; i < n; i++) { ` `        ``int` `x = nums[i] - k; ` ` `  `        ``// If distance x is coverable ` `        ``if` `(x % gcd == 0) ` `            ``ans[i] = 1; ` `        ``else` `            ``ans[i] = 0; ` `    ``} ` ` `  `    ``for` `(i = 0; i < n; i++) ` `        ``cout << ans[i] << ``" "``; ` `} ` ` `  `// Driver code ` `int` `main() ` `{ ` `    ``// Numbers to be checked for reachability ` `    ``int` `nums[] = { 9, 4 }; ` `    ``int` `n = ``sizeof``(nums) / ``sizeof``(nums); ` `    ``// Starting number K ` `    ``int` `k = 8; ` ` `  `    ``// Sizes of jumps d1 and d2 ` `    ``int` `d1 = 3, d2 = 2; ` ` `  `    ``reachTheNums(nums, k, d1, d2, n); ` ` `  `    ``return` `0; ` `} `

## Java

 `// Java implementation of the approach ` ` `  `import` `java.io.*; ` `class` `GFG { ` `// Recursive function to return gcd of a and b  ` `    ``static` `int` `__gcd(``int` `a, ``int` `b)  ` `    ``{  ` `        ``// Everything divides 0   ` `        ``if` `(a == ``0``)  ` `          ``return` `b;  ` `        ``if` `(b == ``0``)  ` `          ``return` `a;  ` `        `  `        ``// base case  ` `        ``if` `(a == b)  ` `            ``return` `a;  ` `        `  `        ``// a is greater  ` `        ``if` `(a > b)  ` `            ``return` `__gcd(a-b, b);  ` `        ``return` `__gcd(a, b-a);  ` `    ``}  ` ` `  ` `  `     `  ` `  `// Function that returns the vector containing the ` `// result for the reachability of the required numbers ` `static` `void` `reachTheNums(``int` `nums[], ``int` `k, ``int` `d1, ``int` `d2, ``int` `n) ` `{ ` `    ``int` `i; ` `    ``int` `ans[] = ``new` `int``[n]; ` `    ``int` `gcd = __gcd(d1, d2); ` ` `  `    ``for` `(i = ``0``; i < n; i++) { ` `        ``int` `x = nums[i] - k; ` ` `  `        ``// If distance x is coverable ` `        ``if` `(x % gcd == ``0``) ` `            ``ans[i] = ``1``; ` `        ``else` `            ``ans[i] = ``0``; ` `    ``} ` ` `  `    ``for` `(i = ``0``; i < n; i++) ` `        ``System.out.print(ans[i] + ``" "``); ` `} ` ` `  `// Driver code ` ` `  ` `  `    ``public` `static` `void` `main (String[] args) { ` `        ``// Numbers to be checked for reachability ` `    ``int` `nums[] = { ``9``, ``4` `}; ` `    ``int` `n =nums.length; ` `    ``// Starting number K ` `    ``int` `k = ``8``; ` ` `  `    ``// Sizes of jumps d1 and d2 ` `    ``int` `d1 = ``3``, d2 = ``2``; ` ` `  `    ``reachTheNums(nums, k, d1, d2, n); ` `    ``} ` `} ` ` `  `// This code is contributed by inder_verma.. `

## Python3

 `# Python3 implementation of the approach ` `import` `math as mt ` ` `  `# Function that returns the vector  ` `# containing the result for the reachability  ` `# of the required numbers ` `def` `reachTheNums(nums, k, d1, d2, n): ` ` `  `    ``ans ``=` `[``0` `for` `i ``in` `range``(n)] ` ` `  `    ``gcd ``=` `mt.gcd(d1, d2) ` ` `  `    ``for` `i ``in` `range``(n): ` `        ``x ``=` `nums[i] ``-` `k ` ` `  `        ``# If distance x is coverable ` `        ``if` `(x ``%` `gcd ``=``=` `0``): ` `            ``ans[i] ``=` `1` `        ``else``: ` `            ``ans[i] ``=` `0` ` `  `    ``for` `i ``in` `range``(n): ` `        ``print``(ans[i], end ``=` `" "``)  ` ` `  `# Driver code ` ` `  `# Numbers to be checked for ` `# reachability ` `nums ``=` `[``9``, ``4``] ` `n ``=` `len``(nums) ` ` `  `# Starting number K ` `k ``=` `8` ` `  `# Sizes of jumps d1 and d2 ` `d1, d2 ``=` `3``, ``2` ` `  `reachTheNums(nums, k, d1, d2, n) ` ` `  `# This code is conteibuted  ` `# by mohit kumar 29 `

## C#

 `// C# implementation of the above approach  ` ` `  `using` `System ; ` ` `  `class` `GFG {  ` `     `  `    ``// Recursive function to return gcd of a and b  ` `    ``static` `int` `__gcd(``int` `a, ``int` `b)  ` `    ``{  ` `        ``// Everything divides 0  ` `        ``if` `(a == 0)  ` `        ``return` `b;  ` `        ``if` `(b == 0)  ` `        ``return` `a;  ` `         `  `        ``// base case  ` `        ``if` `(a == b)  ` `            ``return` `a;  ` `         `  `        ``// a is greater  ` `        ``if` `(a > b)  ` `            ``return` `__gcd(a-b, b);  ` `             `  `        ``return` `__gcd(a, b-a);  ` `    ``}  ` ` `  ` `  `     `  ` `  `    ``// Function that returns the vector containing the  ` `    ``// result for the reachability of the required numbers  ` `    ``static` `void` `reachTheNums(``int` `[]nums, ``int` `k, ``int` `d1, ``int` `d2, ``int` `n)  ` `    ``{  ` `        ``int` `i;  ` `        ``int` `[]ans = ``new` `int``[n];  ` `        ``int` `gcd = __gcd(d1, d2);  ` `     `  `        ``for` `(i = 0; i < n; i++) {  ` `            ``int` `x = nums[i] - k;  ` `     `  `            ``// If distance x is coverable  ` `            ``if` `(x % gcd == 0)  ` `                ``ans[i] = 1;  ` `            ``else` `                ``ans[i] = 0;  ` `        ``}  ` `     `  `        ``for` `(i = 0; i < n; i++)  ` `            ``Console.Write(ans[i] + ``" "``);  ` `    ``}  ` ` `  `    ``// Driver code  ` `    ``public` `static` `void` `Main () {  ` `        ``// Numbers to be checked for reachability  ` `    ``int` `[]nums = { 9, 4 };  ` `    ``int` `n =nums.Length;  ` `    ``// Starting number K  ` `    ``int` `k = 8;  ` ` `  `    ``// Sizes of jumps d1 and d2  ` `    ``int` `d1 = 3, d2 = 2;  ` ` `  `    ``reachTheNums(nums, k, d1, d2, n);  ` `    ``}  ` `    ``// This code is contributed by Ryuga  ` `}  `

## PHP

 ` `

Output:

```1 1
```

My Personal Notes arrow_drop_up Final year BTech IT student at DTU, Upcoming Technology Analyst at Morgan Stanley

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.

7

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.