# Check if it is possible to reach a number by making jumps of two given length

Given a starting position ‘k’ and two jump sizes ‘d1’ and ‘d2’, our task is to find the minimum number of jumps needed to reach ‘x’ if it is possible.

At any position P, we are allowed to jump to positions :

**P + d1**and**P – d1****P + d2**and**P – d2**

**Examples:**

Input: k = 10, d1 = 4, d2 = 6 and x = 8Output: 2 1st step 10 + d1 = 14 2nd step 14 - d2 = 8Input: k = 10, d1 = 4, d2 = 6 and x = 9Output: -1 -1 indicates it is not possible to reach x.

In the previous article we discussed a strategy to check whether a list of numbers is reachable by K by making jump of two given lengths.

Here, instead of a list of numbers, we are given a single integer **x** and if it is reachable from **k** then the task is to find the minimum number of steps or jumps needed.

We will solve this using **Breadth first Search**:

**Approach**:

- Check if ‘x’ is reachable from
**k**. The number**x**is reachable from k if it satisfies**(x – k) % gcd(d1, d2) = 0**. - If x is reachable :
- Maintain a hash table to store the already visited positions.
- Apply bfs algorithm starting from the position k.
- If you reach position P in ‘stp’ steps, you can reach p+d1 position in ‘stp+1’ steps.
- If position P is the required position ‘x’ then steps taken to reach P is the answer

The image below depicts how the algorithm finds out number of steps needed to reach x = 8 with k = 10, d1 = 4 and d2 = 6.

Below is the implementation of the above approach:

`#include <bits/stdc++.h> ` `using` `namespace` `std; ` ` ` `// Function to perform BFS traversal to ` `// find minimum number of step needed ` `// to reach x from K ` `int` `minStepsNeeded(` `int` `k, ` `int` `d1, ` `int` `d2, ` `int` `x) ` `{ ` ` ` `// Calculate GCD of d1 and d2 ` ` ` `int` `gcd = __gcd(d1, d2); ` ` ` ` ` `// If position is not reachable ` ` ` `// return -1 ` ` ` `if` `((k - x) % gcd != 0) ` ` ` `return` `-1; ` ` ` ` ` `// Queue for BFS ` ` ` `queue<pair<` `int` `, ` `int` `> > q; ` ` ` ` ` `// Hash Table for marking ` ` ` `// visited positions ` ` ` `unordered_set<` `int` `> visited; ` ` ` ` ` `// we need 0 steps to reach K ` ` ` `q.push({ k, 0 }); ` ` ` ` ` `// Mark starting position ` ` ` `// as visited ` ` ` `visited.insert(k); ` ` ` ` ` `while` `(!q.empty()) { ` ` ` ` ` `int` `s = q.front().first; ` ` ` ` ` `// stp is the number of steps ` ` ` `// to reach position s ` ` ` `int` `stp = q.front().second; ` ` ` ` ` `if` `(s == x) ` ` ` `return` `stp; ` ` ` ` ` `q.pop(); ` ` ` ` ` `if` `(visited.find(s + d1) == visited.end()) { ` ` ` ` ` `// if position not visited ` ` ` `// add to queue and mark visited ` ` ` `q.push({ s + d1, stp + 1 }); ` ` ` ` ` `visited.insert(s + d1); ` ` ` `} ` ` ` ` ` `if` `(visited.find(s + d2) == visited.end()) { ` ` ` `q.push({ s + d2, stp + 1 }); ` ` ` `visited.insert(s + d2); ` ` ` `} ` ` ` ` ` `if` `(visited.find(s - d1) == visited.end()) { ` ` ` `q.push({ s - d1, stp + 1 }); ` ` ` `visited.insert(s - d1); ` ` ` `} ` ` ` `if` `(visited.find(s - d2) == visited.end()) { ` ` ` `q.push({ s - d2, stp + 1 }); ` ` ` `visited.insert(s - d2); ` ` ` `} ` ` ` `} ` `} ` ` ` `// Driver Code ` `int` `main() ` `{ ` ` ` `int` `k = 10, d1 = 4, d2 = 6, x = 8; ` ` ` ` ` `cout << minStepsNeeded(k, d1, d2, x); ` ` ` ` ` `return` `0; ` `} ` |

*chevron_right*

*filter_none*

**Output:**

2

## Recommended Posts:

- Reach the numbers by making jumps of two given lengths
- Find the minimum of maximum length of a jump required to reach the last island in exactly k jumps
- Minimum number of jumps to reach end
- Find the number of jumps to reach X in the number line from zero
- Minimum length of jumps to avoid given array of obstacles
- Check if it is possible to move from (a, 0) to (b, 0) with given jumps
- Find if two people ever meet after same number of jumps
- Number of jumps for a thief to cross walls
- Word Ladder (Length of shortest chain to reach a target word)
- Number of ways to reach the end of matrix with non-zero AND value
- Number of steps required to reach point (x,y) from (0,0) using zig-zag way
- Find the minimum number of steps to reach M from N
- Count number of ways to reach a given score in a Matrix
- Minimize the number of steps required to reach the end of the array | Set 2
- Check if a graphs has a cycle of odd length

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.