Related Articles
Ratio of area of a rectangle with the rectangle inscribed in it
• Last Updated : 24 Mar, 2021

Given two rectangles, X with a ratio of length to width a:b and Y with a ratio of length to width c:d respectively. Both the rectangles can be resized as long as the ratio of sides remains the same. The task is to place the second rectangle inside the first rectangle such that at least 1 side is equal and that side overlaps of both the rectangles and find the ratio of (space occupied by a 2nd rectangle) : (space occupied by the first rectangle).
Examples:

Input: a = 1, b = 1, c = 3, d = 2
Output: 2:3
The dimensions can be 3X3 and 3X2.

Input: a = 4, b = 3, c = 2, d = 2
Output: 3:4
The dimensions can be 4X3 and 3X3

Approach: If we make one of the sides of rectangles equal then the required ratio would be the ratio of the other side.
Consider 2 cases:

• a*d < b*c : We should make a and c equal.
• b*c < a*d : We should make b and d equal.

Since multiplying both sides of a ratio does not change its value. First try to make a and c equal, it can be made equal to their lcm by multiplying (a:b) with lcm/a and (c:d) with lcm/c. After multiplication, the ratio of (b:d) will be the required answer. This ratio can be reduced by dividing b and d with gcd(b, d).
Below is the implementation of the above approach:

## C++

 // C++ implementation of above approach#include using namespace std; // Function to find the ratiovoid printRatio(int a, int b, int c, int d){    if (b * c > a * d) {        swap(c, d);        swap(a, b);    }     // LCM of numerators    int lcm = (a * c) / __gcd(a, c);     int x = lcm / a;    b *= x;     int y = lcm / c;    d *= y;     // Answer in reduced form    int k = __gcd(b, d);    b /= k;    d /= k;     cout << b << ":" << d;} // Driver codeint main(){    int a = 4, b = 3, c = 2, d = 2;     printRatio(a, b, c, d);     return 0;}

## Java

 // Java implementation of above approach import java.io.*; class GFG {// Recursive function to return gcd of a and b    static int __gcd(int a, int b)    {        // Everything divides 0         if (a == 0)          return b;        if (b == 0)          return a;                // base case        if (a == b)            return a;                // a is greater        if (a > b)            return __gcd(a-b, b);        return __gcd(a, b-a);    }        // Function to find the ratio static void printRatio(int a, int b, int c, int d){    if (b * c > a * d) {        int temp = c;        c =d;        d =c;        temp =a;        a =b;        b=temp;         }     // LCM of numerators    int lcm = (a * c) / __gcd(a, c);     int x = lcm / a;    b *= x;     int y = lcm / c;    d *= y;     // Answer in reduced form    int k = __gcd(b, d);    b /= k;    d /= k;     System.out.print( b + ":" + d);}     // Driver code    public static void main (String[] args) {        int a = 4, b = 3, c = 2, d = 2;     printRatio(a, b, c, d);    }}   // This code is contributed by inder_verma..

## Python3

 import math# Python3 implementation of above approach # Function to find the ratiodef printRatio(a, b, c, d):    if (b * c > a * d):        swap(c, d)        swap(a, b)         # LCM of numerators    lcm = (a * c) / math.gcd(a, c)     x = lcm / a    b = int(b * x)     y = lcm / c    d = int(d * y)     # Answer in reduced form    k = math.gcd(b,d)    b =int(b / k)    d = int(d / k)     print(b,":",d) # Driver codeif __name__ == '__main__':    a = 4    b = 3    c = 2    d = 2     printRatio(a, b, c, d) # This code is contributed by# Surendra_Gangwar

## C#

 // C# implementation of above approach using System; class GFG {// Recursive function to return gcd of a and b    static int __gcd(int a, int b)    {        // Everything divides 0        if (a == 0)        return b;        if (b == 0)        return a;                 // base case        if (a == b)            return a;                 // a is greater        if (a > b)            return __gcd(a-b, b);        return __gcd(a, b-a);    }      // Function to find the ratiostatic void printRatio(int a, int b, int c, int d){    if (b * c > a * d) {        int temp = c;        c =d;        d =c;        temp =a;        a =b;        b=temp;         }     // LCM of numerators    int lcm = (a * c) / __gcd(a, c);     int x = lcm / a;    b *= x;     int y = lcm / c;    d *= y;     // Answer in reduced form    int k = __gcd(b, d);    b /= k;    d /= k;     Console.WriteLine( b + ":" + d);} // Driver code     public static void Main () {        int a = 4, b = 3, c = 2, d = 2;     printRatio(a, b, c, d);    }} // This code is contributed by inder_verma..

## PHP

 \$b)        return __gcd(\$a - \$b, \$b);    return __gcd(\$a, \$b - \$a);} // Function to find the ratiofunction printRatio(\$a, \$b, \$c, \$d){    if (\$b * \$c > \$a * \$d)    {        \$temp = \$c;        \$c = \$d;        \$d = \$c;                 \$temp = \$a;        \$a = \$b;        \$b = \$temp;    }         // LCM of numerators    \$lcm = (\$a * \$c) / __gcd(\$a, \$c);         \$x = \$lcm / \$a;    \$b *= \$x;         \$y = \$lcm / \$c;    \$d *= \$y;         // Answer in reduced form    \$k = __gcd(\$b, \$d);    \$b /= \$k;    \$d /= \$k;         echo \$b . ":" . \$d;} // Driver code\$a = 4; \$b = 3; \$c = 2; \$d = 2; printRatio(\$a, \$b, \$c, \$d); // This code is contributed// by Akanksha Rai?>

## Javascript


Output:
3:4

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

My Personal Notes arrow_drop_up