Skip to content
Related Articles

Related Articles

Improve Article

Pythagorean Triplet with given sum

  • Difficulty Level : Easy
  • Last Updated : 06 Apr, 2021

A Pythagorean Triplet is a set of natural numbers such that a < b < c, for which a^2 + b^2 = c^2. For example, 3^2 + 4^2 = 5^2.
Given a number n, find a Pythagorean Triplet with sum as given n. 
Examples : 
 

Input : n = 12
Output : 3, 4, 5
Note that 3, 4 and 5 is a Pythagorean Triplet
with sum equal to 12.

Input : n = 4.
Output : No Triplet
There does not exist a Pythagorean Triplet
with sum equal to 4.

 

A simple solution is to run three nested loops to generate all possible triplets and for every triplet, check if it is a Pythagorean Triplet and has given sum. Time complexity of this solution is O(n3).
An efficient solution is to run two loops, where first loop runs from i = 1 to n/3, second loop runs from j = i+1 to n/2. In second loop, we check if (n – i – j) is equal to i * i + j * j.
 

C++




// C++ program to find Pythagorean
// Triplet of given sum.
#include <bits/stdc++.h>
using namespace std;
 
void pythagoreanTriplet(int n)
{
    // Considering triplets in
    // sorted order. The value
    // of first element in sorted
    // triplet can be at-most n/3.
    for (int i = 1; i <= n / 3; i++)
    {
         
        // The value of second
        // element must be less
        // than equal to n/2
        for (int j = i + 1; j <= n / 2; j++)
        {
            int k = n - i - j;
            if (i * i + j * j == k * k)
            {
                cout << i << ", "
                     << j << ", "
                     << k;
                return;
            }
        }
    }
 
    cout << "No Triplet";
}
 
// Driver Code
int main()
{
    int n = 12;
    pythagoreanTriplet(n);
    return 0;
}

Java




// Java program to find Pythagorean 
// Triplet of given sum.
class GFG
{
    static void pythagoreanTriplet(int n)
    {
         
        // Considering triplets in
        // sorted order. The value
        // of first element in sorted
        // triplet can be at-most n/3.
        for (int i = 1; i <= n / 3; i++)
        {
             
            // The value of second element
            // must be less than equal to n/2
            for (int j = i + 1; j <= n / 2; j++)
            {
                int k = n - i - j;
                if (i * i + j * j == k * k)
                {
                    System.out.print(i + ", "+
                                j + ", " + k);
                    return;
                }
            }
        }
     
        System.out.print("No Triplet");
    }
     
    // Driver Code
    public static void main(String arg[])
    {
        int n = 12;
         
        pythagoreanTriplet(n);
    }
}
 
// This code is contributed by Anant Agarwal.

Python3




# Python3 program to find
# Pythagorean Triplet of
# given sum.
 
def pythagoreanTriplet(n):
 
    # Considering triplets in
    # sorted order. The value
    # of first element in sorted
    # triplet can be at-most n/3.
    for i in range(1, int(n / 3) + 1):
         
        # The value of second element
        # must be less than equal to n/2
        for j in range(i + 1,
                       int(n / 2) + 1):
 
            k = n - i - j
            if (i * i + j * j == k * k):
                print(i, ", ", j, ", ",
                               k, sep = "")
                return
     
    print("No Triplet")
     
# Driver Code
n = 12
pythagoreanTriplet(n)
 
# This code is contributed
# by Smitha Dinesh Semwal

C#




// C# program to find 
// Pythagorean Triplet
// of given sum.
using System;
 
class GFG
{
    static void pythagoreanTriplet(int n)
    {
         
        // Considering triplets in
        // sorted order. The value
        // of first element in sorted
        // triplet can be at-most n/3.
        for (int i = 1; i <= n / 3; i++)
        {
             
            // The value of second element
            // must be less than equal to n/2
            for (int j = i + 1;
                     j <= n / 2; j++)
            {
                int k = n - i - j;
                if (i * i + j * j == k * k)
                {
                    Console.Write(i + ", "+
                                  j + ", " + k);
                    return;
                }
            }
        }
     
        Console.Write("No Triplet");
    }
     
    // Driver Code
    public static void Main()
    {
        int n = 12;
         
        pythagoreanTriplet(n);
    }
}
 
// This code is contributed by Vt_m.

PHP




<?php
// PHP program to find 
// Pythagorean Triplet
// of given sum.
 
function pythagoreanTriplet($n)
{
    // Considering triplets in
    // sorted order. The value
    // of first element in sorted
    // triplet can be at-most n/3.
    for ( $i = 1; $i <= $n / 3; $i++)
    {
         
        // The value of second
        // element must be less
        // than equal to n/2
        for ( $j = $i + 1; $j <= $n / 2; $j++)
        {
            $k = $n - $i - $j;
            if ($i * $i + $j * $j == $k * $k)
            {
                echo $i , ", ", $j ,", ", $k;
                return;
            }
        }
    }
 
    echo "No Triplet";
}
 
// Driver Code
$n = 12;
pythagoreanTriplet($n);
 
// This code is contributed by anuj_67.
?>

Javascript




<script>
 
// JavaScript program to find Pythagorean 
// Triplet of given sum.
 
    function pythagoreanTriplet(n)
    {
           
        // Considering triplets in
        // sorted order. The value
        // of first element in sorted
        // triplet can be at-most n/3.
        for (let i = 1; i <= n / 3; i++)
        {
               
            // The value of second element
            // must be less than equal to n/2
            for (let j = i + 1; j <= n / 2; j++)
            {
                let k = n - i - j;
                if (i * i + j * j == k * k)
                {
                    document.write(i + ", "+
                                j + ", " + k);
                    return;
                }
            }
        }
       
        document.write("No Triplet");
    }
 
// Driver Code
        let n = 12;
        pythagoreanTriplet(n);
 
// This code is contributed by avijitmondal1998.
</script>
Output : 
3, 4, 5

 

Attention reader! Don’t stop learning now. Get hold of all the important mathematical concepts for competitive programming with the Essential Maths for CP Course at a student-friendly price. To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.




My Personal Notes arrow_drop_up
Recommended Articles
Page :