Proto Van Emde Boas Trees | Set 4 | Deletion
Please check previous sets of Proto Van Emde Boas Tree article first. It is highly recommended.
Procedure for delete:
- Base Case: If we reach at Proto VEB with size 2 then we will check for whether the key is present or not if yes then we assign the pointer to nullptr which will set false to it presence.
- Recursion:
- We recursively call delete function over the cluster of the keys i.e. high(key) and its position low(key).
- After we delete the key from the cluster (after we reach to the base case) we check whether there are any other keys are present in the cluster. If there is any key present then we can not set the summary to nullptr otherwise we will set the summary to nullptr by calling delete over summary.
Lets understand 1 delete on Proto-VEB of size 4:
First it will recursively call delete(cluster[0], 1).
So now the base case is satisfied so it will go at position 1 in the cluster[0] Proto-VEB and will set it to nullptr if it is present.
Now we will check if any more keys are present in cluster[0] (see the for loop in delete), 0 is present so delete(summary, 0) call is not going to execute and summary will remain same.
See the image below to understand it:
Follow the instructions written near the boxes from top to bottom.
Below is the implementation:
CPP
// C++ implementation of the approach #include <bits/stdc++.h> using namespace std; class Proto_Van_Emde_Boas { public : // Total number of keys int universe_size; // Summary Proto_Van_Emde_Boas* summary; // Clusters array of Proto-VEB pointers vector<Proto_Van_Emde_Boas*> clusters; int root( int u) { return int ( sqrt (u)); } // Function to return cluster numbers // in which key is present int high( int x) { return x / root(universe_size); } // Function to return position of x in cluster int low( int x) { return x % root(universe_size); } // Function to return the index from // cluster number and position int generate_index( int cluster, int position) { return cluster * root(universe_size) + position; } // Constructor Proto_Van_Emde_Boas( int size) { universe_size = size; // Base case if (size <= 2) { // Set summary to nullptr as there is no // more summary for size 2 summary = nullptr; // Vector of two pointers // nullptr in starting clusters = vector<Proto_Van_Emde_Boas*>(size, nullptr); } else { // Assigning Proto-VEB(sqrt(u)) to summary summary = new Proto_Van_Emde_Boas(root(size)); // Creating array of Proto-VEB Tree pointers of size sqrt(u) // first all nullptrs are going to assign clusters = vector<Proto_Van_Emde_Boas*>(root(size), nullptr); // Assigning Proto-VEB(sqrt(u)) to all its clusters for ( int i = 0; i < root(size); i++) { clusters[i] = new Proto_Van_Emde_Boas(root(size)); } } } }; // Function that returns true if the // key is present in the tree bool isMember(Proto_Van_Emde_Boas* helper, int key) { // If key is greater then universe_size then // returns false if (key >= helper->universe_size) return false ; // If we reach at base case // the just return whether // pointer is nullptr then false // else return true if (helper->universe_size == 2) { return helper->clusters[key]; } else { // Recursively go deep into the // level of Proto-VEB tree using its // cluster index and its position return isMember(helper->clusters[helper->high(key)], helper->low(key)); } } // Function to insert a key in the tree void insert(Proto_Van_Emde_Boas*& helper, int key) { // If we reach at base case // then assign Proto-VEB(1) in place // of nullptr if (helper->universe_size == 2) { helper->clusters[key] = new Proto_Van_Emde_Boas(1); } else { // Recursively using index of cluster and its // position in cluster insert(helper->clusters[helper->high(key)], helper->low(key)); // Also do the same recursion in summary VEB insert(helper->summary, helper->high(key)); } } // Function to delete a key from the tree void pveb_delete(Proto_Van_Emde_Boas*& helper, int key) { // Base case: If the key is present // then make it nullptr if (helper->universe_size == 2) { if (helper->clusters[key]) { delete helper->clusters[key]; helper->clusters[key] = nullptr; } } else { // Recursive delete to reach at the base case pveb_delete(helper->clusters[helper->high(key)], helper->low(key)); bool isanyinCluster = false ; // Iterate over the cluster of keys to check whether // any other key is present within that cluster // If yes then we should not update summary to 0 // else update summary to 0 for ( int i = helper->high(key) * helper->root(helper->universe_size); i < (helper->high(key) + 1) * helper->root(helper->universe_size); i++) { // If member is present then break the loop if (isMember(helper->clusters[helper->high(key)], i)) { isanyinCluster = true ; break ; } } // If no member is present then // update summary to zero if (isanyinCluster == false ) { pveb_delete(helper->summary, helper->high(key)); } } } // Driver code int main() { Proto_Van_Emde_Boas* hello = new Proto_Van_Emde_Boas(4); cout << isMember(hello, 2); insert(hello, 2); insert(hello, 3); cout << isMember(hello, 2); pveb_delete(hello, 2); cout << isMember(hello, 2); } |
Java
// Java implementation of the approach import java.util.*; class Proto_Van_Emde_Boas { // Total number of keys int universe_size; Proto_Van_Emde_Boas summary; // Clusters array of Proto-VEB pointers ArrayList<Proto_Van_Emde_Boas> clusters; Proto_Van_Emde_Boas( int size) { universe_size = size; // Base case if (size <= 2 ) { // Set summary to nullptr as there is no // more summary for size 2 summary = null ; clusters = new ArrayList<Proto_Van_Emde_Boas>(size); for ( int i = 0 ; i < size; i++) { clusters.add( null ); } } else { summary = new Proto_Van_Emde_Boas(root(size)); // Creating array of Proto-VEB Tree pointers of size sqrt(u) // first all nullptrs are going to assign clusters = new ArrayList<Proto_Van_Emde_Boas>(root(size)); // Assigning Proto-VEB(sqrt(u)) to all its clusters for ( int i = 0 ; i < root(size); i++) { clusters.add( new Proto_Van_Emde_Boas(root(size))); } } } int root( int u) { return ( int ) Math.sqrt(u); } // Function to return cluster numbers // in which key is present int high( int x) { return x / root(universe_size); } int low( int x) { return x % root(universe_size); } // return the index from cluster number and position int generate_index( int cluster, int position) { return cluster * root(universe_size) + position; } } class Solution { //returns true if the key is present in the tree public static boolean isMember(Proto_Van_Emde_Boas helper, int key) { // If key is greater then universe_size then // returns false if (key >= helper.universe_size) { return false ; } // pointer is nullptr then false // else return true if (helper.universe_size == 2 ) { return helper.clusters.get(key) != null ; } else { // Recursively go deep into the // level of Proto-VEB tree using its // cluster index and its position return isMember(helper.clusters.get(helper.high(key)), helper.low(key)); } } // Function to insert a key in the tree public static void insert(Proto_Van_Emde_Boas helper, int key) { if (helper.universe_size == 2 ) { helper.clusters.set(key, new Proto_Van_Emde_Boas( 1 )); } else { // Recursively using index of cluster and its // position in cluster insert(helper.clusters.get(helper.high(key)), helper.low(key)); insert(helper.summary, helper.high(key)); } } // Function to delete a key from the tree public static void pveb_delete(Proto_Van_Emde_Boas helper, int key) { // If the key is present then make it nullptr if (helper.universe_size == 2 ) { if (helper.clusters.get(key) != null ) { helper.clusters.set(key, null ); } } else { pveb_delete(helper.clusters.get(helper.high(key)), helper.low(key)); boolean isanyinCluster = false ; // Iterate over the cluster of keys to check whether // any other key is present within that cluster // If yes then we should not update summary to 0 // else update summary to 0 for ( int i = helper.high(key) * helper.root(helper.universe_size); i < (helper.high(key) + 1 ) * helper.root(helper.universe_size); i++) { if (isMember(helper.clusters.get(helper.high(key)), i)) { isanyinCluster = true ; break ; } } // If no member is present then // update summary to zero if (!isanyinCluster) { pveb_delete(helper.summary, helper.high(key)); } } } // Driver code public static void main(String[] args) { Proto_Van_Emde_Boas hello = new Proto_Van_Emde_Boas( 4 ); // checking it is member or not by isMember System.out.println(isMember(hello, 2 )); // inserting insert(hello, 2 ); insert(hello, 3 ); // again checking it is member or not by isMember System.out.println(isMember(hello, 2 )); // deleting pveb_delete(hello, 2 ); // checking it is member or not by isMember System.out.println(isMember(hello, 2 )); } } |
Python3
# Python implementation import math class ProtoVanEmdeBoas: def __init__( self , size): self .universeSize = size # Set summary to null as there is no # more summary for size 2 if size < = 2 : self .summary = None self .clusters = [ None ] * size else : self .summary = ProtoVanEmdeBoas( self .Root(size)) self .clusters = [ProtoVanEmdeBoas( self .Root(size)) for i in range ( self .Root(size))] def Root( self , u): return int (math.sqrt(u)) def High( self , x): return int (x / self .Root( self .universeSize)) def Low( self , x): return x % self .Root( self .universeSize) def GenerateIndex( self , cluster, position): return cluster * self .Root( self .universeSize) + position # Function that returns true if the key is present in # the tree def IsMember(helper, key): # If key is greater than or equal to universeSize # then return false if key > = helper.universeSize: return False # If we reach at base case # the just return whether # pointer is nullptr then false # else return true if helper.universeSize = = 2 : return helper.clusters[key] ! = None else : # Recursively go deep into the # level of Proto-VEB tree using its # cluster index and its position return IsMember(helper.clusters[helper.High(key)], helper.Low(key)) # Function to insert a key in the tree def Insert(helper, key): # If we reach at base case # then assign Proto-VEB(1) in place # of nullptr if helper.universeSize = = 2 : helper.clusters[key] = ProtoVanEmdeBoas( 1 ) else : # Recursively using index of cluster and its # position in cluster Insert(helper.clusters[helper.High(key)], helper.Low(key)) # Also do the same recursion in summary VEB Insert(helper.summary, helper.High(key)) # Function to delete a key from the tree def PvebDelete(helper, key): # Base case: If the key is present # then make it nullptr if helper.universeSize = = 2 : if helper.clusters[key] ! = None : helper.clusters[key] = None else : # Recursive delete to reach at the base case PvebDelete(helper.clusters[helper.High(key)], helper.Low(key)) isAnyInCluster = False # Iterate over the cluster of keys to check whether # any other key is present within that cluster # If yes then we should not update summary to 0 # else update summary to 0 for i in range (helper.High(key) * helper.Root(helper.universeSize), (helper.High(key) + 1 ) * helper.Root(helper.universeSize)): # If member is present then break the loop if IsMember(helper.clusters[helper.High(key)], i): isAnyInCluster = True break # If no member is present then # update summary to zero if not isAnyInCluster: PvebDelete(helper.summary, helper.High(key)) # Driver Code hello = ProtoVanEmdeBoas( 4 ) # Checking the membership print (IsMember(hello, 2 )) # Inserting Insert(hello, 2 ) Insert(hello, 3 ) # Checking the membership print (IsMember(hello, 2 )) # deleting PvebDelete(hello, 2 ) print (IsMember(hello, 2 )) |
Javascript
class ProtoVanEmdeBoas { constructor(size) { this .universeSize = size; if (size <= 2) { // Set summary to null as there is no // more summary for size 2 this .summary = null ; this .clusters = new Array(size).fill( null ); } else { this .summary = new ProtoVanEmdeBoas( this .Root(size)); // Creating array of Proto-VEB Tree pointers of size sqrt(u) // first all nulls are going to assign this .clusters = new Array( this .Root(size)).fill( null ).map(() => new ProtoVanEmdeBoas( this .Root(size))); } } Root(u) { return Math.floor(Math.sqrt(u)); } // Function to return cluster numbers // in which key is present High(x) { return Math.floor(x / this .Root( this .universeSize)); } // Function to return position of x in cluster Low(x) { return x % this .Root( this .universeSize); } // return the index from cluster number and position GenerateIndex(cluster, position) { return cluster * this .Root( this .universeSize) + position; } } // Function that returns true if the key is present in // the tree function IsMember(helper, key) { // If key is greater than or equal to universeSize // then return false if (key >= helper.universeSize) { return false ; } // If we reach at base case // the just return whether // pointer is nullptr then false // else return true if (helper.universeSize === 2) { return helper.clusters[key] !== null ; } else { // Recursively go deep into the // level of Proto-VEB tree using its // cluster index and its position return IsMember(helper.clusters[helper.High(key)], helper.Low(key)); } } // Function to insert a key in the tree function Insert(helper, key) { // If we reach at base case // then assign Proto-VEB(1) in place // of nullptr if (helper.universeSize === 2) { helper.clusters[key] = new ProtoVanEmdeBoas(1); } else { // Recursively using index of cluster and its // position in cluster Insert(helper.clusters[helper.High(key)], helper.Low(key)); // Also do the same recursion in summary VEB Insert(helper.summary, helper.High(key)); } } // Function to delete a key from the tree function PvebDelete(helper, key) { // Base case: If the key is present // then make it nullptr if (helper.universeSize === 2) { if (helper.clusters[key] !== null ) { helper.clusters[key] = null ; } } else { // Recursive delete to reach at the base case PvebDelete(helper.clusters[helper.High(key)], helper.Low(key)); let isAnyInCluster = false ; // Iterate over the cluster of keys to check whether // any other key is present within that cluster // If yes then we should not update summary to 0 // else update summary to 0 for (let i = helper.High(key) * helper.Root(helper.universeSize); i < (helper.High(key) + 1) * helper.Root(helper.universeSize); i++) { // If member is present then break the loop if (IsMember(helper.clusters[helper.High(key)], i)) { isAnyInCluster = true ; break ; } } // If no member is present then // update summary to zero if (!isAnyInCluster) { PvebDelete(helper.summary, helper.High(key)); } } } // Driver code const hello = new ProtoVanEmdeBoas(4); console.log(IsMember(hello, 2)); Insert(hello, 2); Insert(hello, 3); console.log(IsMember(hello, 2)); PvebDelete(hello, 2); console.log(IsMember(hello, 2)); |
C#
using System; using System.Collections.Generic; public class ProtoVanEmdeBoas { // Total number of keys public int universeSize; public ProtoVanEmdeBoas summary; // Clusters array of Proto-VEB pointers public List< ProtoVanEmdeBoas> clusters; public ProtoVanEmdeBoas( int size) { universeSize = size; // Base case if (size <= 2) { // Set summary to null as there is no // more summary for size 2 summary = null ; clusters = new List<ProtoVanEmdeBoas>(size); for ( int i = 0; i < size; i++) { clusters.Add( null ); } } else { summary = new ProtoVanEmdeBoas(Root(size)); // Creating array of Proto-VEB Tree pointers of size sqrt(u) // first all nulls are going to assign clusters = new List< ProtoVanEmdeBoas>(Root(size)); // Assigning Proto-VEB(sqrt(u)) to all its clusters for ( int i = 0; i < Root(size); i++) { clusters.Add( new ProtoVanEmdeBoas(Root(size))); } } } public int Root( int u) { return ( int )Math.Sqrt(u); } // Function to return cluster numbers // in which key is present public int High( int x) { return x / Root(universeSize); } public int Low( int x) { return x % Root(universeSize); } // return the index from cluster number and position int GenerateIndex( int cluster, int position) { return cluster * Root(universeSize) + position; } } public class Solution { // Function that returns true if the key is present in // the tree static bool IsMember(ProtoVanEmdeBoas helper, int key) { // If key is greater than or equal to universeSize // then return false if (key >= helper.universeSize) { return false ; } if (helper.universeSize == 2) { return helper.clusters[key] != null ; } else { return IsMember( helper.clusters[helper.High(key)], helper.Low(key)); } } // Function to insert a key in the tree static void Insert(ProtoVanEmdeBoas helper, int key) { if (helper.universeSize == 2) { helper.clusters[key] = new ProtoVanEmdeBoas(1); } else { Insert(helper.clusters[helper.High(key)], helper.Low(key)); // Also do the same recursion in summary VEB Insert(helper.summary, helper.High(key)); } } // Function to delete a key from the tree public static void PvebDelete( ProtoVanEmdeBoas helper, int key) { // If the key is present then make it null if (helper.universeSize == 2) { if (helper.clusters[key] != null ) { helper.clusters[key] = null ; } } else { PvebDelete(helper.clusters[helper.High(key)], helper.Low(key)); bool isanyinCluster = false ; // Iterate over the cluster of keys to check whether // any other key is present within that cluster // If yes then we should not update summary to 0 // else update summary to 0 for ( int i = helper.High(key) * helper.Root(helper.universeSize); i < (helper.High(key) + 1) * helper.Root(helper.universeSize); i++) { if (IsMember(helper.clusters[helper.High(key)], i)) { isanyinCluster = true ; break ; } } // If no member is present then update summary to zero if (!isanyinCluster) { PvebDelete(helper.summary, helper.High(key)); } } } static void Main() { ProtoVanEmdeBoas hello = new ProtoVanEmdeBoas(4); // checking is member or not by calling isMember func. Console.WriteLine(IsMember(hello, 2)); // inserting Insert(hello, 2); Insert(hello, 3); Console.WriteLine(IsMember(hello, 2)); // deleting PvebDelete(hello, 2); // checking is member or not by calling isMember func. Console.WriteLine(IsMember(hello, 2)); }} |
Recurrence Relation for Delete:
T(u) = T(u) = 2T()) + O(log2(
))
Time Complexity : O(log2(u)*log2(log2(u)))
Please Login to comment...