Program to find the Roots of Quadratic equation

Given a quadratic equation in the form ax2 + bx + c, find roots of it.

Examples :

Input  :  a = 1, b = -2, c = 1
Output :  Roots are real and same
          1

Input  :  a = 1, b = 7, c = 12
Output :  Roots are real and different
          -3, -4

Input  :  a = 1, b = 1, c = 1
Output :  Roots are complex 
          -0.5 + i1.73205
          -0.5 - i1.73205  

Below is direct formula for finding roots of quadratic equation.

x=\frac{-b\pm \sqrt{b^2-4ac}}{2a}
There are following important cases.


If b*b < 4*a*c, then roots are complex
(not real).
For example roots of x2 + x + 1, roots are
-0.5 + i1.73205 and -0.5 - i1.73205

If b*b == 4*a*c, then roots are real 
and both roots are same.
For example, roots of x2 - 2x + 1 are 1 and 1

If b*b > 4*a*c, then roots are real 
and different.
For example, roots of x2 - 7x - 12 are 3 and 4

Below is the implementation of above formula.

C

filter_none

edit
close

play_arrow

link
brightness_4
code

/* C program to find roots of a quadratic equation */
#include<stdio.h>
#include<math.h>
#include<stdlib.h>
  
  
// Prints roots of quadratic equation ax*2 + bx + x
void findRoots(int a, int b, int c)
{
    // If a is 0, then equation is not quadratic, but
    // linear
    if (a == 0)
    {
        printf("Invalid");
        return;
    }
  
    int d = b*b - 4*a*c;
    double sqrt_val = sqrt(abs(d));
  
    if (d > 0)
    {
        printf("Roots are real and different \n");
        printf("%f\n%f",(double)(-b + sqrt_val)/(2*a)
            , (double)(-b - sqrt_val)/(2*a));
    }
    else if (d == 0)
    {
        printf("Roots are real and same \n");
        printf("%f",-(double)b / (2*a));
    }
    else // d < 0
    {
        printf("Roots are complex \n");
        printf("%f + i%f\n%f - i%f", -(double)b / (2*a),sqrt_val
            ,-(double)b / (2*a), sqrt_val);
    }
}
  
// Driver code
int main()
{
    int a = 1, b = -7, c = 12;
    findRoots(a, b, c);
    return 0;
}

chevron_right


C++

filter_none

edit
close

play_arrow

link
brightness_4
code

/* C++ program to find roots of a quadratic equation */
#include<bits/stdc++.h>
using namespace std;
  
// Prints roots of quadratic equation ax*2 + bx + x
void findRoots(int a, int b, int c)
{
     // If a is 0, then equation is not quadratic, but
     // linear
     if (a == 0)
     {
        cout << "Invalid";
        return;
     }
  
     int d  = b*b - 4*a*c;
     double sqrt_val = sqrt(abs(d));
  
     if (d > 0)
     {
         cout << "Roots are real and different \n";
         cout << (double)(-b + sqrt_val)/(2*a) << "\n"
              << (double)(-b - sqrt_val)/(2*a);
     }
     else if (d == 0)
     {
         cout << "Roots are real and same \n";
         cout << -(double)b / (2*a);
     }
     else // d < 0
     {
         cout << "Roots are complex \n";
         cout << -(double)b / (2*a) << " + i" << sqrt_val
              << "\n"  << -(double)b / (2*a) << " - i"
              << sqrt_val;
     }
}
  
// Driver code
int main()
{
    int a = 1, b = -7, c = 12;
    findRoots(a, b, c);
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program to find roots 
//of a quadratic equation 
  
import java.io.*;
import static java.lang.Math.*;
class Quadratic
{
  
    // Prints roots of quadratic 
    //equation ax * 2 + bx + x
    void findRoots(int a, int b, int c)
    {
     // If a is 0, then equation is not     
     //quadratic, but linear
     
     if (a == 0)
     {
        System.out.println("Invalid");
        return;
     }
   
     int d  = b*b - 4*a*c;
     double sqrt_val = sqrt(abs(d));
   
     if (d > 0)
     {
        System.out.println("Roots are real and different \n");
  
        System.out.println((double)(-b + sqrt_val) / (2 * a) + "\n" 
                            + (double)(-b - sqrt_val) / (2 * a));
     }
     else // d < 0
     {
        System.out.println("Roots are complex \n");
  
        System.out.println( -(double)b / ( 2 * a ) + " + i" 
                          + sqrt_val + "\n"  + -(double)b / ( 2 * a )
                          + " - i" + sqrt_val);
     }
    }
   
 // Driver code
 public static void main(String args[])
    {
       Quadratic obj = new Quadratic();
       int a = 1, b = -7, c = 12;
       obj.findRoots(a, b, c);
    }
}
  
//This code is contributed by Anshika Goyal.

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python program to find roots
# of a quadratic equation
import math
  
# Prints roots of quadratic equation 
# ax*2 + bx + x
def findRoots( a, b, c):
  
    # If a is 0, then equation is 
    # not quadratic, but linear
    if a == 0:
        print("Invalid")
        return -1
    d = b * b - 4 * a * c
    sqrt_val = math.sqrt(abs(d))
      
    if d > 0:
        print("Roots are real and different ")
        print((-b + sqrt_val)/(2 * a))
        print((-b - sqrt_val)/(2 * a))
    elif d == 0:
        print("Roots are real and same")
        print(-b / (2*a))
    else: #d<0
        print("Roots are complex")
        print(- b / (2*a) , " + i", sqrt_val)
        print(- b / (2*a) , " - i", sqrt_val)
  
# Driver Program
a = 1
b = -7
c = 12
findRoots(a, b, c)
  
# This code is contributed by Sharad Bhardwaj.

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program to find roots 
// of a quadratic equation 
using System;
  
class Quadratic {
  
// Prints roots of quadratic 
// equation ax * 2 + bx + x
void findRoots(int a, int b, int c)
{
      
    // If a is 0, then equation is  
    // not quadratic, but linear
      
    if (a == 0)
    {
        Console.Write("Invalid");
        return;
    }
  
    int d = b*b - 4*a*c;
    double sqrt_val = Math.Abs(d);
  
    if (d > 0)
    {
    Console.Write("Roots are real and different \n");
  
        Console.Write((double)(-b + sqrt_val) / 
                      (2 * a) + "\n"    + (double)
                      (-b - sqrt_val) / (2 * a));
    }
      
    // d < 0
    else 
    {
        Console.Write("Roots are complex \n");
  
        Console.Write( -(double)b / ( 2 * a ) + 
                    " + i" + sqrt_val + "\n" 
                       -(double)b / ( 2 * a ) + 
                            " - i" + sqrt_val);
    }
    }
  
// Driver code
public static void Main()
{
    Quadratic obj = new Quadratic();
    int a = 1, b = -7, c = 12;
    obj.findRoots(a, b, c);
}
}
  
// This code is contributed by nitin mittal.

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
// PHP program to find roots
// of a quadratic equation
  
// Prints roots of quadratic 
// equation ax*2 + bx + x
function findRoots($a, $b, $c)
{
    // If a is 0, then equation is 
    // not quadratic, but linear
    if ($a == 0)
    {
        echo "Invalid";
        return;
    }
  
    $d = $b * $b - 4 * $a * $c;
    $sqrt_val = sqrt(abs($d));
  
    if ($d > 0)
    {
        echo "Roots are real and "
                    "different \n";
        echo (-$b + $sqrt_val) / (2 * $a) , "\n"
             (-$b - $sqrt_val) / (2 * $a);
    }
    else if ($d == 0)
    {
        echo "Roots are real and same \n";
        echo -$b / (2 * $a);
    }
      
    // d < 0
    else 
    {
        echo "Roots are complex \n";
        echo -$b / (2 * $a) , " + i"
              $sqrt_val, "\n" , -$b / (2 * $a), 
                             " - i", $sqrt_val;
    }
}
  
// Driver code
$a = 1; $b = -7 ;$c = 12;
findRoots($a, $b, $c);
  
// This code is contributed
// by nitin mittal.
?>

chevron_right



Output :

Roots are real and different 
4
3

This article is contributed by Dheeraj Gupta. Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.



My Personal Notes arrow_drop_up



Article Tags :
Practice Tags :


Be the First to upvote.


Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.