Given a quadratic equation in the form ax2 + bx + c, (Only the values of a, b and c are provided) the task is to find the roots of the equation.

Examples:
Input: a = 1, b = -2, c = 1
Output: Roots are real and same 1
Input : a = 1, b = 7, c = 12
Output: Roots are real and different
-3, -4
Input : a = 1, b = 1, c = 1
Output : Roots are complex
-0.5 + i1.73205, -0.5 – i1.73205
Roots of Quadratic Equation using Sridharacharya Formula:
The roots could be found using the below formula (It is known as the formula of Sridharacharya)

The values of the roots depends on the term (b2 – 4ac) which is known as the discriminant (D).
If D > 0:
=> This occurs when b2 > 4ac.
=> The roots are real and unequal.
=> The roots are {-b + ?(b2 – 4ac)}/2a and {-b – ?(b2 – 4ac)}/2a.
If D = 0:
=> This occurs when b2 = 4ac.
=> The roots are real and equal.
=> The roots are (-b/2a).
If D < 0:
=> This occurs when b2 < 4ac.
=> The roots are imaginary and unequal.
=> The discriminant can be written as (-1 * -D).
=> As D is negative, -D will be positive.
=> The roots are {-b ± ?(-1*-D)} / 2a = {-b ± i?(-D)} / 2a = {-b ± i?-(b2 – 4ac)}/2a where i = ?-1.
Use the following pseudo algorithm to find the roots of the
Pseudo algorithm:
Start
Read the values of a, b, c
Compute d = b2 – 4ac
If d > 0
calculate root1 = {-b + ?(b2 – 4ac)}/2a
calculate root2 = {-b – ?(b2 – 4ac)}/2a
else If d = 0
calculate root1 = root2 = (-b/2a)
else
calculate root1 = {-b + i?-(b2 – 4ac)}/2a
calculate root2 = {-b + i?-(b2 – 4ac)}/2a
print root1 and root2
End
Below is the implementation of the above formula.
C++
#include <bits/stdc++.h>
using namespace std;
void findRoots( int a, int b, int c)
{
if (a == 0) {
cout << "Invalid" ;
return ;
}
int d = b * b - 4 * a * c;
double sqrt_val = sqrt ( abs (d));
if (d > 0) {
cout << "Roots are real and different \n" ;
cout << ( double )(-b + sqrt_val) / (2 * a) << "\n"
<< ( double )(-b - sqrt_val) / (2 * a);
}
else if (d == 0) {
cout << "Roots are real and same \n" ;
cout << -( double )b / (2 * a);
}
else
{
cout << "Roots are complex \n" ;
cout << -( double )b / (2 * a) << " + i"
<< sqrt_val / (2 * a) << "\n"
<< -( double )b / (2 * a) << " - i"
<< sqrt_val / (2 * a);
}
}
int main()
{
int a = 1, b = -7, c = 12;
findRoots(a, b, c);
return 0;
}
|
C
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
void findRoots( int a, int b, int c)
{
if (a == 0) {
printf ( "Invalid" );
return ;
}
int d = b * b - 4 * a * c;
double sqrt_val = sqrt ( abs (d));
if (d > 0) {
printf ( "Roots are real and different \n" );
printf ( "%f\n%f" , ( double )(-b + sqrt_val) / (2 * a),
( double )(-b - sqrt_val) / (2 * a));
}
else if (d == 0) {
printf ( "Roots are real and same \n" );
printf ( "%f" , -( double )b / (2 * a));
}
else
{
printf ( "Roots are complex \n" );
printf ( "%f + i%f\n%f - i%f" , -( double )b / (2 * a),
sqrt_val / (2 * a), -( double )b / (2 * a),
sqrt_val / (2 * a));
}
}
int main()
{
int a = 1, b = -7, c = 12;
findRoots(a, b, c);
return 0;
}
|
Java
import static java.lang.Math.*;
import java.io.*;
class Quadratic {
static void findRoots( int a, int b, int c)
{
if (a == 0 ) {
System.out.println( "Invalid" );
return ;
}
int d = b * b - 4 * a * c;
double sqrt_val = sqrt(abs(d));
if (d > 0 ) {
System.out.println(
"Roots are real and different \n" );
System.out.println(
( double )(-b + sqrt_val) / ( 2 * a) + "\n"
+ ( double )(-b - sqrt_val) / ( 2 * a));
}
else if (d == 0 ) {
System.out.println(
"Roots are real and same \n" );
System.out.println(-( double )b / ( 2 * a) + "\n"
+ -( double )b / ( 2 * a));
}
else
{
System.out.println( "Roots are complex \n" );
System.out.println(-( double )b / ( 2 * a) + " + i"
+ sqrt_val / ( 2 * a) + "\n"
+ -( double )b / ( 2 * a)
+ " - i"
+ sqrt_val / ( 2 * a));
}
}
public static void main(String args[])
{
int a = 1 , b = - 7 , c = 12 ;
findRoots(a, b, c);
}
}
|
Python3
import math
def findRoots(a, b, c):
if a = = 0 :
print ( "Invalid" )
return - 1
d = b * b - 4 * a * c
sqrt_val = math.sqrt( abs (d))
if d > 0 :
print ( "Roots are real and different " )
print (( - b + sqrt_val) / ( 2 * a))
print (( - b - sqrt_val) / ( 2 * a))
elif d = = 0 :
print ( "Roots are real and same" )
print ( - b / ( 2 * a))
else :
print ( "Roots are complex" )
print ( - b / ( 2 * a), " + i" , sqrt_val / ( 2 * a))
print ( - b / ( 2 * a), " - i" , sqrt_val / ( 2 * a))
if __name__ = = '__main__' :
a = 1
b = - 7
c = 12
findRoots(a, b, c)
|
C#
using System;
class Quadratic {
void findRoots( int a, int b, int c)
{
if (a == 0) {
Console.Write( "Invalid" );
return ;
}
int d = b * b - 4 * a * c;
double sqrt_val = Math.Abs(d);
if (d > 0) {
Console.Write(
"Roots are real and different \n" );
Console.Write(
( double )(-b + sqrt_val) / (2 * a) + "\n"
+ ( double )(-b - sqrt_val) / (2 * a));
}
else {
Console.Write( "Roots are complex \n" );
Console.Write(-( double )b / (2 * a) + " + i"
+ sqrt_val / (2 * a) + "\n"
+ -( double )b / (2 * a) + " - i"
+ sqrt_val / (2 * a));
}
}
public static void Main()
{
Quadratic obj = new Quadratic();
int a = 1, b = -7, c = 12;
obj.findRoots(a, b, c);
}
}
|
PHP
<?php
function findRoots( $a , $b , $c )
{
if ( $a == 0)
{
echo "Invalid" ;
return ;
}
$d = $b * $b - 4 * $a * $c ;
$sqrt_val = sqrt( abs ( $d ));
if ( $d > 0)
{
echo "Roots are real and " .
"different \n" ;
echo (- $b + $sqrt_val ) / (2 * $a ) , "\n" ,
(- $b - $sqrt_val ) / (2 * $a );
}
else if ( $d == 0)
{
echo "Roots are real and same \n" ;
echo - $b / (2 * $a );
}
else
{
echo "Roots are complex \n" ;
echo - $b / (2 * $a ) , " + i" ,
$sqrt_val / (2 * $a ) , "\n" , - $b / (2 * $a ),
" - i" , $sqrt_val / (2 * $a ) ;
}
}
$a = 1; $b = -7 ; $c = 12;
findRoots( $a , $b , $c );
?>
|
Javascript
<script>
function findRoots(a, b, c)
{
if (a == 0) {
document.write( "Invalid" );
return ;
}
let d = b * b - 4 * a * c;
let sqrt_val = Math.sqrt(Math.abs(d));
if (d > 0) {
document.write(
"Roots are real and different \n" + "<br/>" );
document.write(
(-b + sqrt_val) / (2 * a) + "<br/>"
+ (-b - sqrt_val) / (2 * a));
}
else if (d == 0) {
document.write(
"Roots are real and same \n" + "<br/>" );
document.write(-b / (2 * a) + "<br/>"
+ -b / (2 * a)) ;
}
else
{
document.write( "Roots are complex \n" );
document.write(-b / (2 * a) + " + i"
+ sqrt_val / (2 * a) + "<br/>"
+ -b / (2 * a)
+ " - i" + sqrt_val) / (2 * a) ;
}
}
let a = 1, b = -7, c = 12;
findRoots(a, b, c);
</script>
|
Output
Roots are real and different
4.000000
3.000000
Time Complexity: O(log(D)), where D is the discriminant of the given quadratic equation.
Auxiliary Space: O(1)

Self Paced Course
Using Formula in python:
Approach:
- Import the math module for square root and other mathematical operations.
- Declare the coefficients a, b, and c of the quadratic equation.
- Calculate the discriminant discriminant using the formula b^2 – 4ac.
- Check if the discriminant is greater than zero, zero, or less than zero.
- If the discriminant is greater than zero, calculate two real and distinct roots using the formula (-b + sqrt(discriminant)) / (2*a) and (-b – sqrt(discriminant)) / (2*a), and print the roots with the message “Roots are real and distinct”.
- If the discriminant is equal to zero, calculate one real and same root using the formula -b / (2*a), and print the root with the message “Roots are real and same”.
- If the discriminant is less than zero, calculate two complex and different roots using the formula (-b / 2*a) +/- (sqrt(-discriminant) / (2*a)), and print the roots with the message “Roots are complex and different”.
Python3
import math
a = 1
b = - 2
c = 1
discriminant = b * * 2 - 4 * a * c
if discriminant > 0 :
root1 = ( - b + math.sqrt(discriminant)) / ( 2 * a)
root2 = ( - b - math.sqrt(discriminant)) / ( 2 * a)
print ( "Roots are real and distinct" )
print ( "Root 1:" , root1)
print ( "Root 2:" , root2)
elif discriminant = = 0 :
root = - b / ( 2 * a)
print ( "Roots are real and same" )
print ( "Root:" , root)
else :
realPart = - b / ( 2 * a)
imaginaryPart = math.sqrt( - discriminant) / ( 2 * a)
print ( "Roots are complex and different" )
print ( "Root 1:" , realPart, "+" , imaginaryPart, "i" )
print ( "Root 2:" , realPart, "-" , imaginaryPart, "i" )
|
Output
Roots are real and same
Root: 1.0
Time Complexity: O(1)
Space Complexity: O(1)
Please write comments if you find anything incorrect, or have more information about the topic discussed above.
Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!