Related Articles

# Program to find number of solutions in Quadratic Equation

• Last Updated : 22 Apr, 2021

Given an equation with value a, b, and c, where a and b is any value and c is constant, find how many solutions thus this quadratic equation have?
Examples:

Input : Output : 2 solutions
Input : Output : no solution

Solution:
To check whether the equation has a solution or not, quadratic formula for discriminant is used.

The formula is given as, Respective conditions are given as,

• if the discriminant is positive , then the quadratic equation has two solutions.
• if the discriminant is equal , then the quadratic equation has one solution.
• if the discriminant is negative , then the quadratic equation has no solution.

Programs:

## C++

 // C++ Program to find the solutions of specified equations#include using namespace std; // Method to check for solutions of equationsvoid checkSolution(int a, int b, int c){     // If the expression is greater than 0, then 2 solutions    if (((b * b) - (4 * a * c)) > 0)        cout << "2 solutions";     // If the expression is equal 0, then 2 solutions    else if (((b * b) - (4 * a * c)) == 0)        cout << "1 solution";     // Else no solutions    else        cout << "No solutions";} int main(){    int a = 2, b = 5, c = 2;    checkSolution(a, b, c);    return 0;}

## Java

 // Java Program to find the solutions of specified equationspublic class GFG {     // Method to check for solutions of equations    static void checkSolution(int a, int b, int c)    {         // If the expression is greater than 0,        // then 2 solutions        if (((b * b) - (4 * a * c)) > 0)            System.out.println("2 solutions");         // If the expression is equal 0, then 2 solutions        else if (((b * b) - (4 * a * c)) == 0)            System.out.println("1 solution");         // Else no solutions        else            System.out.println("No solutions");    }     // Driver Code    public static void main(String[] args)    {        int a = 2, b = 5, c = 2;        checkSolution(a, b, c);    }}

## Python3

 # Python3 Program to find the# solutions of specified equations # function to check for# solutions of equationsdef checkSolution(a, b, c) :     # If the expression is greater    # than 0, then 2 solutions    if ((b * b) - (4 * a * c)) > 0 :        print("2 solutions")     # If the expression is equal 0,    # then 1 solutions    elif ((b * b) - (4 * a * c)) == 0 :        print("1 solution")     # Else no solutions    else :        print("No solutions") # Driver codeif __name__ == "__main__" :     a, b, c = 2, 5, 2    checkSolution(a, b, c) # This code is contributed# by ANKITRAI1

## C#

 // C# Program to find the solutions// of specified equationsusing System;class GFG{ // Method to check for solutions of equationsstatic void checkSolution(int a, int b, int c){     // If the expression is greater    // than 0, then 2 solutions    if (((b * b) - (4 * a * c)) > 0)        Console.WriteLine("2 solutions");     // If the expression is equal to 0,    // then 2 solutions    else if (((b * b) - (4 * a * c)) == 0)        Console.WriteLine("1 solution");     // Else no solutions    else        Console.WriteLine("No solutions");} // Driver Codepublic static void Main(){    int a = 2, b = 5, c = 2;    checkSolution(a, b, c);}} // This code is contributed by inder_verma

## PHP

  0)        echo "2 solutions";     // If the expression is equal 0,    // then 2 solutions    else if ((($b * $b) -              (4 * $a * $c)) == 0)        echo "1 solution";     // Else no solutions    else        echo"No solutions";} // Driver Code$a = 2; $b = 5; $c = 2;checkSolution($a, $b, $c); // This code is contributed// by inder_verma?>

## Javascript

 

Output:

2 solutions

Attention reader! All those who say programming isn’t for kids, just haven’t met the right mentors yet. Join the  Demo Class for First Step to Coding Coursespecifically designed for students of class 8 to 12.

The students will get to learn more about the world of programming in these free classes which will definitely help them in making a wise career choice in the future.

My Personal Notes arrow_drop_up