Find the quadratic equation from the given roots

Given the roots of a quadratic equation A and B, the task is to find the equation.

Note: The given roots are integral.

Examples:



Input: A = 2, B = 3
Output: x^2 – (5x) + (6) = 0
x2 – 5x + 6 = 0
x2 -3x -2x + 6 = 0
x(x – 3) – 2(x – 3) = 0
(x – 3) (x – 2) = 0
x = 2, 3

Input: A = 5, B = 10
Output: x^2 – (15x) + (50) = 0

Approach: If the roots of a quadratic equation ax2 + bx + c = 0 are A and B then it known that
A + B = – b * a and A * B = c * a.
Now, ax2 + bx + c = 0 can be written as
x2 + (b / a)x + (c / a) = 0 (Since, a != 0)
x2 – (A + B)x + (A * B) = 0, [Since, A + B = -b * a and A * B = c * a]
i.e. x2 – (Sum of the roots)x + Product of the roots = 0

Below is the implementation of the above approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
  
// Function to find the quadratic
// equation whose roots are a and b
void findEquation(int a, int b)
{
    int sum = (a + b);
    int product = (a * b);
    cout << "x^2 - (" << sum << "x) + ("
         << product << ") = 0";
}
  
// Driver code
int main()
{
    int a = 2, b = 3;
  
    findEquation(a, b);
  
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java implementation of the above approach 
class GFG 
{
      
    // Function to find the quadratic 
    // equation whose roots are a and b 
    static void findEquation(int a, int b) 
    
        int sum = (a + b); 
        int product = (a * b); 
        System.out.println("x^2 - (" + sum + 
                           "x) + (" + product + ") = 0"); 
    
      
    // Driver code 
    public static void main(String args[])
    
        int a = 2, b = 3
      
        findEquation(a, b); 
    
}
  
// This code is contributed by AnkitRai01

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 implementation of the approach
  
# Function to find the quadratic
# equation whose roots are a and b
def findEquation(a, b):
    summ = (a + b)
    product = (a * b)
    print("x^2 - (", summ, 
          "x) + (", product, ") = 0")
  
# Driver code
a = 2
b = 3
  
findEquation(a, b)
  
# This code is contributed by Mohit Kumar

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# implementation of the above approach 
using System;
class GFG 
{
      
    // Function to find the quadratic 
    // equation whose roots are a and b 
    static void findEquation(int a, int b) 
    
        int sum = (a + b); 
        int product = (a * b); 
        Console.WriteLine("x^2 - (" + sum + 
                          "x) + (" + product + ") = 0"); 
    
      
    // Driver code 
    public static void Main()
    
        int a = 2, b = 3; 
      
        findEquation(a, b); 
    
}
  
// This code is contributed by CodeMech.

chevron_right


Output:

x^2 - (5x) + (6) = 0


My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.





Article Tags :
Practice Tags :


Be the First to upvote.


Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.