# Program to calculate the value of sin(x) and cos(x) using Expansion

Given a value of angle, you need to calculate Sin and Cos values corresponding to it.

For sin function

Examples:

Input : 90
Output : 1

## C++

 // CPP code for implementing sin function #include #include using namespace std;   // Function for calculating sin value void cal_sin(float n) {         float accuracy = 0.0001, denominator, sinx, sinval;           // Converting degrees to radian     n = n * (3.142 / 180.0);        float x1 = n;           // maps the sum along the series     sinx = n;                    // holds the actual value of sin(n)     sinval = sin(n);         int i = 1;     do    {         denominator = 2 * i * (2 * i + 1);         x1 = -x1 * n * n / denominator;         sinx = sinx + x1;         i = i + 1;     } while (accuracy <= fabs(sinval - sinx));     cout << sinx; }   // Main function int main() {     float n = 90;     cal_sin(n);     return 0; }

## Java

 import static java.lang.Math.sin;   // JAVA code for implementing sin function   class GFG {   // Function for calculating sin value  static void cal_sin(float n)  {          float accuracy = (float) 0.0001, denominator, sinx, sinval;            // Converting degrees to radian      n = n * (float)(3.142 / 180.0);        float x1 = n;            // maps the sum along the series      sinx = n;                    // holds the actual value of sin(n)      sinval = (float)sin(n);          int i = 1;      do    {          denominator = 2 * i * (2 * i + 1);          x1 = -x1 * n * n / denominator;          sinx = sinx + x1;          i = i + 1;      } while (accuracy <= sinval - sinx);         System.out.println(sinx);  }    // Main function          public static void main(String[] args) {         float n = 90;      cal_sin(n);            } }

## Python3

 # Python3 code for implementing  # sin function import math;   # Function for calculating sin value def cal_sin(n):       accuracy = 0.0001;           # Converting degrees to radian     n = n * (3.142 / 180.0);            x1 = n;           # maps the sum along the series     sinx = n;                # holds the actual value of sin(n)     sinval = math.sin(n);      i = 1;     while(True):               denominator = 2 * i * (2 * i + 1);         x1 = -x1 * n * n / denominator;         sinx = sinx + x1;         i = i + 1;         if(accuracy <= abs(sinval - sinx)):             break;               print(round(sinx));   # Driver Code n = 90; cal_sin(n);       # This code is contributed by mits

## C#

 // C# code for implementing sin function  using System;   class GFG { // Function for calculating sin value  static void cal_sin(float n)  {      float accuracy = (float) 0.0001,                        denominator, sinx, sinval;            // Converting degrees to radian      n = n * (float)(3.142 / 180.0);        float x1 = n;            // maps the sum along the series      sinx = n;                // holds the actual value of sin(n)      sinval = (float)Math.Sin(n);          int i = 1;      do    {          denominator = 2 * i * (2 * i + 1);          x1 = -x1 * n * n / denominator;          sinx = sinx + x1;          i = i + 1;      } while (accuracy <= sinval - sinx);            Console.WriteLine(sinx);  }    // Driver Code static public void Main () {     float n = 90;      cal_sin(n);  } }   // This code is contributed by jit_t

## PHP

 

## Javascript

 

Output:

1

Time Complexity: O(n)

Space Complexity: O(1)

For cos function

Examples:

Input : 30
Output : 0.86602

## C++

 // CPP code for implementing cos function #include #include using namespace std;   // Function for calculation void cal_cos(float n) {     float accuracy = 0.0001, x1, denominator, cosx, cosval;           // Converting degrees to radian     n = n * (3.142 / 180.0);           x1 = 1;           // maps the sum along the series     cosx = x1;                    // holds the actual value of sin(n)     cosval = cos(n);     int i = 1;     do    {         denominator = 2 * i * (2 * i - 1);         x1 = -x1 * n * n / denominator;         cosx = cosx + x1;         i = i + 1;     } while (accuracy <= fabs(cosval - cosx));     cout << cosx; }   // Main function int main() {     float n = 30;     cal_cos(n); }

## Java

 // Java code for implementing cos function   import static java.lang.Math.cos;   class GFG { // Function for calculation   static void cal_cos(float n) {     float accuracy = (float) 0.0001, x1, denominator, cosx, cosval;     // Converting degrees to radian     n = n * (float) (3.142 / 180.0);     x1 = 1;     // maps the sum along the series     cosx = x1;     // holds the actual value of sin(n)     cosval = (float) cos(n);     int i = 1;     do {         denominator = 2 * i * (2 * i - 1);         x1 = -x1 * n * n / denominator;         cosx = cosx + x1;         i = i + 1;               }     while (accuracy <= cosval - cosx);     System.out.println(cosx);       }   // Main function public static void main(String[] args) {     float n = 30;     cal_cos(n);       } }

## Python3

 # Python 3 code for implementing cos function   from math import fabs, cos   # Function for calculation def cal_cos(n):     accuracy = 0.0001      # Converting degrees to radian     n = n * (3.142 / 180.0)           x1 = 1          # maps the sum along the series     cosx = x1           # holds the actual value of sin(n)     cosval = cos(n)     i = 1      denominator = 2 * i * (2 * i - 1)     x1 = -x1 * n * n / denominator     cosx = cosx + x1     i = i + 1    while (accuracy <= fabs(cosval - cosx)):         denominator = 2 * i * (2 * i - 1)         x1 = -x1 * n * n / denominator         cosx = cosx + x1         i = i + 1      print('{0:.6}'.format(cosx))   # Driver Code if __name__ == '__main__':     n = 30    cal_cos(n)   # This code is contributed by # Sahil_Shelangia

## C#

 // C# code for implementing cos function    using System; class GFG {  // Function for calculation    static void cal_cos(float n) {      float accuracy = (float) 0.0001, x1, denominator, cosx, cosval;      // Converting degrees to radian      n = n * (float) (3.142 / 180.0);      x1 = 1;      // maps the sum along the series      cosx = x1;      // holds the actual value of sin(n)      cosval = (float) Math.Cos(n);      int i = 1;      do {          denominator = 2 * i * (2 * i - 1);          x1 = -x1 * n * n / denominator;          cosx = cosx + x1;          i = i + 1;                }      while (accuracy <= cosval - cosx);      Console.WriteLine(cosx);        }    // Main function  static void Main() {      float n = 30;      cal_cos(n);        }  }  // This code is contributed by mits

## PHP

 

## Javascript

 

Output:

0.86602

Time Complexity: O(n)

Space Complexity: O(1)

If you like GeeksforGeeks(We know you do!) and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org.

Previous
Next