Skip to content
Related Articles

Related Articles

Program to print binomial expansion series
  • Difficulty Level : Hard
  • Last Updated : 14 Apr, 2021

Given three integers, A, X and n, the task is to print terms of below binomial expression series. 
 

(A+X)n = nC0AnX0 + nC1An-1X1 + nC2An-2X2 +….+ nCnA0Xn 
 

Examples: 
 

Input : A = 1, X = 1, n = 5
Output : 1 5 10 10 5 1

Input : A = 1, B = 2, n = 6
Output : 1 12 60 160 240 192 64 

 

Simple Solution : We know that for each value of n there will be (n+1) term in the binomial series. So now we use a simple approach and calculate the value of each element of the series and print it . 
 

nCr = (n!) / ((n-r)! * (r)!)

Below is value of general term. 
Tr+1 = nCn-rAn-rXr
So at each position we have to find the value 
of the general term and print that term .

 



C++




// CPP program to print terms of binomial
// series and also calculate sum of series.
#include <bits/stdc++.h>
using namespace std;
 
// function to calculate factorial of
// a number
int factorial(int n)
{
    int f = 1;
    for (int i = 2; i <= n; i++)
        f *= i;       
    return f;
}
 
// function to print the series
void series(int A, int X, int n)
{    
    // calculating the value of n!
    int nFact = factorial(n);
 
    // loop to display the series
    for (int i = 0; i < n + 1; i++) {
         
        // For calculating the
        // value of nCr
        int niFact = factorial(n - i);
        int iFact = factorial(i);
 
        // calculating the value of
        // A to the power k and X to
        // the power k
        int aPow = pow(A, n - i);
        int xPow = pow(X, i);
 
        // display the series
        cout << (nFact * aPow * xPow) /
                 (niFact * iFact) << " ";
    }
}
 
// main function started
int main()
{
    int A = 3, X = 4, n = 5;
    series(A, X, n);
    return 0;
}

Java




// Java program to print terms of binomial
// series and also calculate sum of series.
 
import java.io.*;
 
class GFG {
     
    // function to calculate factorial of
    // a number
    static int factorial(int n)
    {
        int f = 1;
        for (int i = 2; i <= n; i++)
            f *= i;
             
        return f;
    }
 
    // function to print the series
    static void series(int A, int X, int n)
    {
         
        // calculating the value of n!
        int nFact = factorial(n);
 
        // loop to display the series
        for (int i = 0; i < n + 1; i++) {
 
            // For calculating the
            // value of nCr
            int niFact = factorial(n - i);
            int iFact = factorial(i);
 
            // calculating the value of
            // A to the power k and X to
            // the power k
            int aPow = (int)Math.pow(A, n - i);
            int xPow = (int)Math.pow(X, i);
 
            // display the series
            System.out.print((nFact * aPow * xPow)
                         / (niFact * iFact) + " ");
        }
    }
 
    // main function started
    public static void main(String[] args)
    {
        int A = 3, X = 4, n = 5;
         
        series(A, X, n);
    }
}
 
// This code is contributed by vt_m.

Python3




# Python3 program to print terms of binomial
# series and also calculate sum of series.
 
# function to calculate factorial
# of a number
def factorial(n):
 
    f = 1
    for i in range(2, n+1):
        f *= i
         
    return f
 
# Function to print the series
def series(A, X, n):
     
    # calculating the value of n!
    nFact = factorial(n)
 
    # loop to display the series
    for i in range(0, n + 1):
         
        # For calculating the
        # value of nCr
        niFact = factorial(n - i)
        iFact = factorial(i)
 
        # calculating the value of
        # A to the power k and X to
        # the power k
        aPow = pow(A, n - i)
        xPow = pow(X, i)
 
        # display the series
        print (int((nFact * aPow * xPow) /
                   (niFact * iFact)), end = " ")
     
# Driver Code
A = 3; X = 4; n = 5
series(A, X, n)
 
# This code is contributed by Smitha Dinesh Semwal.

C#




// C# program to print terms of binomial
// series and also calculate sum of series.
using System;
 
class GFG {
     
    // function to calculate factorial of
    // a number
    static int factorial(int n)
    {
        int f = 1;
        for (int i = 2; i <= n; i++)
            f *= i;
             
        return f;
    }
 
    // function to print the series
    static void series(int A, int X, int n)
    {
         
        // calculating the value of n!
        int nFact = factorial(n);
 
        // loop to display the series
        for (int i = 0; i < n + 1; i++) {
 
            // For calculating the
            // value of nCr
            int niFact = factorial(n - i);
            int iFact = factorial(i);
 
            // calculating the value of
            // A to the power k and X to
            // the power k
            int aPow = (int)Math.Pow(A, n - i);
            int xPow = (int)Math.Pow(X, i);
 
            // display the series
            Console.Write((nFact * aPow * xPow)
                     / (niFact * iFact) + " ");
        }
    }
 
    // main function started
    public static void Main()
    {
        int A = 3, X = 4, n = 5;
         
        series(A, X, n);
    }
}
 
// This code is contributed by anuj_67.

PHP




<?php
// PHP program to print
// terms of binomial
// series and also
// calculate sum of series.
 
// function to calculate
// factorial of a number
function factorial($n)
{
    $f = 1;
    for ($i = 2; $i <= $n; $i++)
        $f *= $i;
    return $f;
}
 
// function to print the series
function series($A, $X, $n)
{
     
    // calculating the
    // value of n!
    $nFact = factorial($n);
 
    // loop to display
    // the series
    for ($i = 0; $i < $n + 1; $i++)
    {
         
        // For calculating the
        // value of nCr
        $niFact = factorial($n - $i);
        $iFact = factorial($i);
 
        // calculating the value of
        // A to the power k and X to
        // the power k
        $aPow = pow($A, $n - $i);
        $xPow = pow($X, $i);
 
        // display the series
        echo ($nFact * $aPow * $xPow) /
             ($niFact * $iFact) , " ";
    }
}
 
    // Driver Code
    $A = 3;
    $X = 4;
    $n = 5;
    series($A, $X, $n);
 
// This code is contributed by anuj_67.
?>

Javascript




<script>
 
// JavaScript program to print terms of binomial
// series and also calculate sum of series.
 
    // function to calculate factorial of
    // a number
    function factorial(n)
    {
        let f = 1;
        for (let i = 2; i <= n; i++)
            f *= i;
               
        return f;
    }
   
    // function to prlet the series
    function series(A, X, n)
    {
           
        // calculating the value of n!
        let nFact = factorial(n);
   
        // loop to display the series
        for (let i = 0; i < n + 1; i++) {
   
            // For calculating the
            // value of nCr
            let niFact = factorial(n - i);
            let iFact = factorial(i);
   
            // calculating the value of
            // A to the power k and X to
            // the power k
            let aPow = Math.pow(A, n - i);
            let xPow = Math.pow(X, i);
   
            // display the series
            document.write((nFact * aPow * xPow)
                         / (niFact * iFact) + " ");
        }
    }
  
// Driver Code
        let A = 3, X = 4, n = 5;
        series(A, X, n);
           
          // This code is contributed by chinmoy1997pal.
</script>
Output: 
243 1620 4320 5760 3840 1024 

 

Efficient Solution : 
The idea is to compute next term using previous term. We can compute next term in O(1) time. We use below property of Binomial Coefficients.
nCi+1 = nCi*(n-i)/(i+1)
 

C++




// CPP program to print terms of binomial
// series and also calculate sum of series.
#include <bits/stdc++.h>
using namespace std;
 
// function to print the series
void series(int A, int X, int n)
{
    // Calculating and printing first term
    int term = pow(A, n);
    cout << term << " ";
 
    // Computing and printing remaining terms
    for (int i = 1; i <= n; i++) {
 
        // Find current term using previous terms
        // We increment power of X by 1, decrement
        // power of A by 1 and compute nCi using
        // previous term by multiplying previous
        // term with (n - i + 1)/i
        term = term * X * (n - i + 1)/(i * A);
 
        cout << term << " ";
    }
}
 
// main function started
int main()
{
    int A = 3, X = 4, n = 5;
    series(A, X, n);
    return 0;
}

Java




// Java program to print terms of binomial
// series and also calculate sum of series.
 
import java.io.*;
 
class GFG {
     
    // function to print the series
    static void series(int A, int X, int n)
    {
         
        // Calculating and printing first
        // term
        int term = (int)Math.pow(A, n);
        System.out.print(term + " ");
 
        // Computing and printing
        // remaining terms
        for (int i = 1; i <= n; i++) {
 
            // Find current term using
            // previous terms We increment
            // power of X by 1, decrement
            // power of A by 1 and compute
            // nCi using previous term by
            // multiplying previous term
            // with (n - i + 1)/i
            term = term * X * (n - i + 1)
                                / (i * A);
 
            System.out.print(term + " ");
        }
    }
 
    // main function started
    public static void main(String[] args)
    {
        int A = 3, X = 4, n = 5;
         
        series(A, X, n);
    }
}
 
// This code is contributed by vt_m.

Python3




# Python 3 program to print terms of binomial
# series and also calculate sum of series.
 
# Function to print the series
def series(A, X, n):
 
    # Calculating and printing first term
    term = pow(A, n)
    print(term, end = " ")
 
    # Computing and printing remaining terms
    for i in range(1, n+1):
 
        # Find current term using previous terms
        # We increment power of X by 1, decrement
        # power of A by 1 and compute nCi using
        # previous term by multiplying previous
        # term with (n - i + 1)/i
        term = int(term * X * (n - i + 1)/(i * A))
 
        print(term, end = " ")
     
# Driver Code
A = 3; X = 4; n = 5
series(A, X, n)
 
# This code is contributed by Smitha Dinesh Semwal.

C#




// C# program to print terms of binomial
// series and also calculate sum of series.
 
using System;
 
public class GFG {
     
    // function to print the series
    static void series(int A, int X, int n)
    {
         
        // Calculating and printing first
        // term
        int term = (int)Math.Pow(A, n);
        Console.Write(term + " ");
 
        // Computing and printing
        // remaining terms
        for (int i = 1; i <= n; i++) {
 
            // Find current term using
            // previous terms We increment
            // power of X by 1, decrement
            // power of A by 1 and compute
            // nCi using previous term by
            // multiplying previous term
            // with (n - i + 1)/i
            term = term * X * (n - i + 1)
                                / (i * A);
 
          Console.Write(term + " ");
        }
    }
 
    // main function started
    public static void Main()
    {
        int A = 3, X = 4, n = 5;
         
        series(A, X, n);
    }
}
 
// This code is contributed by anuj_67.

PHP




<?php
// PHP program to print
// terms of binomial
// series and also
// calculate sum of
// series.
 
// function to print
// the series
function series($A, $X, $n)
{
     
    // Calculating and printing
    // first term
    $term = pow($A, $n);
    echo $term , " ";
 
    // Computing and printing
    // remaining terms
    for ($i = 1; $i <= $n; $i++)
    {
 
        // Find current term
        // using previous terms
        // We increment power
        // of X by 1, decrement
        // power of A by 1 and
        // compute nCi using
        // previous term by
        // multiplying previous
        // term with (n - i + 1)/i
        $term = $term * $X * ($n - $i + 1) /
                                 ($i * $A);
 
        echo $term , " ";
    }
}
 
    // Driver Code
    $A = 3;
    $X = 4;
    $n = 5;
    series($A, $X, $n);
 
// This code is contributed by anuj_67.
?>

Javascript




<script>
 
// JavaScript program to print terms of binomial
// series and also calculate sum of series.
 
// function to print the series
function series(A, X, n)
{
    // Calculating and printing first term
    let term = Math.pow(A, n);
    document.write(term + " ");
 
    // Computing and printing remaining terms
    for (let i = 1; i <= n; i++) {
 
        // Find current term using previous terms
        // We increment power of X by 1, decrement
        // power of A by 1 and compute nCi using
        // previous term by multiplying previous
        // term with (n - i + 1)/i
        term = term * X * (n - i + 1)/(i * A);
 
        document.write(term + " ");
    }
}
 
// main function started
 
    let A = 3, X = 4, n = 5;
    series(A, X, n);
 
// This code is contributed by Surbhi Tyagi.
 
</script>
Output: 
243 1620 4320 5760 3840 1024 

 

Attention reader! Don’t stop learning now. Get hold of all the important mathematical concepts for competitive programming with the Essential Maths for CP Course at a student-friendly price. To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

My Personal Notes arrow_drop_up
Recommended Articles
Page :