Skip to content
Related Articles

Related Articles

Program for sum of cos(x) series
  • Difficulty Level : Easy
  • Last Updated : 31 Mar, 2021

Given n and x, where n is the number of terms in the series and x is the value of the angle in degree. 
Program to calculate the value of cosine of x using series expansion formula and compare the value with the library function’s output.

Formula Used : 
cos x = 1 – (x2 / 2 !) + (x4 / 4 !) – (x6 / 6 !) +…

Examples : 

Input : n = 3
        x = 90
Output : Sum of the cosine series is =  -0.23
The value using library function is = -0.000204

Input : n = 4
        x = 45
Output : 
Sum of the cosine series is = 0.71
The value using library function is = 0.707035

 

C++




// CPP program to find the
// sum of cos(x) series
#include <bits/stdc++.h>
using namespace std;
 
const double PI = 3.142;
 
double cosXSertiesSum(double x, int n)
{
    // here x is in degree.
    // we have to convert it to radian
    // for using it with series formula,
    // as in series expansion angle is in radian
 
    x = x * (PI / 180.0);
 
    double res = 1;
    double sign = 1, fact = 1, pow = 1;
    for (int i = 1; i < 5; i++) {
        sign = sign * -1;
        fact = fact * (2 * i - 1) * (2 * i);
        pow = pow * x * x;
        res = res + sign * pow / fact;
    }
 
    return res;
}
 
// Driver Code
int main()
{
    float x = 50;
    int n = 5;
    cout << cosXSertiesSum(x, 5);
    return 0;
}

Java




// Java program to find
// the sum of cos(x) series
import java.lang.Math.*;
 
class GFG
{
    static final double PI = 3.142;
     
    static double cosXSertiesSum(double x,
                                 int n)
    {
          // here x is in degree.
        // we have to convert it to radian
        // for using it with series formula,
        // as in series expansion angle is in radian
       
        x = x * (PI / 180.0);
     
        double res = 1;
        double sign = 1, fact = 1,
                         pow = 1;
        for (int i = 1; i < 5; i++)
        {
            sign = sign * -1;
            fact = fact * (2 * i - 1) *
                               (2 * i);
            pow = pow * x * x;
            res = res + sign * pow / fact;
        }
     
        return res;
    }
     
    // Driver Code
    public static void main(String[] args)
    {
        float x = 50;
        int n = 5;
        System.out.println((float)(
            cosXSertiesSum(x, 5) * 1000000) /
                                 1000000.00);
    }
}
 
// This code is contributed by Smitha.

Python3




# Python3 program to find the
# sum of cos(x) series
 
PI = 3.142;
 
def cosXSertiesSum(x, n):
     
    # here x is in degree.
    # we have to convert it to radian
    # for using it with series formula,
    # as in series expansion angle is in radian
     
    x = x * (PI / 180.0);
 
    res = 1;
    sign = 1;
    fact = 1;
    pow = 1;
     
    for i in range(1,5):
        sign = sign * (-1);
        fact = fact * (2 * i - 1) * (2 * i);
        pow = pow * x * x;
        res = res + sign * pow / fact;
 
    return res;
 
# Driver Code
x = 50;
n = 5;
print(round(cosXSertiesSum(x, 5), 6));
 
# This code is contributed by mits

C#




// C# program to find the
// sum of cos(x) series
using System;
 
class GFG
{
    static double PI = 3.142;
     
    static double cosXSertiesSum(double x,
                                 int n)
    {
          // here x is in degree.
        // we have to convert it to radian
        // for using it with series formula,
        // as in series expansion angle is in radian
         
          x = x * (PI / 180.0);
     
        double res = 1;
        double sign = 1, fact = 1,
                         pow = 1;
        for (int i = 1; i < 5; i++)
        {
            sign = sign * -1;
            fact = fact * (2 * i - 1) *
                               (2 * i);
            pow = pow * x * x;
            res = res + sign * pow / fact;
        }
     
        return res;
    }
     
    // Driver Code
    public static void Main()
    {
        float x = 50;
        int n = 5;
        Console.Write((float)(cosXSertiesSum(x, n) *
                             1000000) / 1000000.00);
    }
}
 
// This code is contributed by Smitha.

PHP




<?php
// PHP program to find the
// sum of cos(x) series
 
$PI = 3.142;
 
function cosXSertiesSum($x, $n)
{
    global $PI;
   
   
    // here x is in degree.
    // we have to convert it to radian
    // for using it with series formula,
    // as in series expansion angle is in radian
   
    $x = $x * ($PI / 180.0);
 
    $res = 1;
    $sign = 1; $fact = 1;
               $pow = 1;
    for ( $i = 1; $i < 5; $i++)
    {
        $sign = $sign * -1;
        $fact = $fact * (2 * $i - 1) *
                             (2 * $i);
        $pow = $pow * $x * $x;
        $res = $res + $sign * $pow /
                              $fact;
    }
 
    return $res;
}
 
// Driver Code
$x = 50;
$n = 5;
echo cosXSertiesSum($x, 5);
 
// This code is contributed by aj_36
?>

Javascript




<script>
 
// Javascript program to find
// the sum of cos(x) series
 
const  PI = 3.142;
 
    function cosXSertiesSum( x, n) {
        // here x is in degree.
        // we have to convert it to radian
        // for using it with series formula,
        // as in series expansion angle is in radian
 
        x = x * (PI / 180.0);
 
        let res = 1;
        let sign = 1, fact = 1, pow = 1,i;
        for ( i = 1; i < 5; i++) {
            sign = sign * -1;
            fact = fact * (2 * i - 1) * (2 * i);
            pow = pow * x * x;
            res = res + sign * pow / fact;
        }
 
        return res;
    }
 
    // Driver Code
      
        let x = 50;
        let n = 5;
        document.write( ((cosXSertiesSum(x, 5) * 1000000) / 1000000.00).toFixed(6));
 
// This code is contributed by shikhasingrajput
 
</script>
Output : 



0.642701

 

Note that we can also find cos(x) using library function.  

C++




// C++ code to illustrate
// the use of cos function
#include <bits/stdc++.h>
using namespace std;
 
#define PI 3.14159265
 
int main ()
{
    double x, ret, val;
     
    x = 60.0;
    val = PI / 180.0;
    ret = cos(x * val);
    cout << "The cosine of " << fixed
         << setprecision(6) << x << " is ";
    cout << fixed << setprecision(6)
         << ret << " degrees" << endl;
          
    x = 90.0;
    val = PI / 180.0;
    ret = cos(x * val);
    cout << "The cosine of " << fixed
         << setprecision(6) << x << " is ";
    cout << fixed << setprecision(6)
         << ret << " degrees" << endl;
     
    return(0);
}
 
// This code is contributed by shubhamsingh10

C




// C code to illustrate
// the use of cos function
#include <stdio.h>
#include <math.h>
 
#define PI 3.14159265
 
int main ()
{
double x, ret, val;
 
x = 60.0;
val = PI / 180.0;
ret = cos( x * val );
printf("The cosine of %lf is ", x);
printf("%lf degrees\n", ret);
     
x = 90.0;
val = PI / 180.0;
ret = cos( x*val );
printf("The cosine of %lf is ", x);
printf("%lf degrees\n", ret);
     
return(0);
}

Java




// Java code to illustrate
// the use of cos function
import java.io.*;
 
class GFG
{
static final double PI = 3.142;
public static void main (String[] args)
{
    double x, ret, val;
     
    x = 60.0;
    val =(int)PI / 180.0;
    ret = Math.cos(x * val);
    System.out.print("The cosine of " +
                           x + " is ");
    System.out.print(ret);
    System.out.println(" degrees");
         
    x = 90.0;
    val = (int)PI / 180.0;
    ret = Math.cos( x*val );
    System.out.print("The cosine of " +
                           x + " is ");
    System.out.print(ret);
    System.out.println(" degrees");
}
}
 
// This code is contributed
// by ajit

Python3




# Python3 code to illustrate
# the use of cos function
import math
 
if __name__=='__main__':
    PI = 3.14159265
 
    x = 60.0
    val = PI / 180.0
    ret = math.cos(x * val)
    print("The cosine of is ", x, end=" ")
    print(" degrees", ret)
 
    x = 90.0
    val = PI / 180.0
    ret = math.cos(x * val)
    print("The cosine of is ", x, end=" ")
    print("degrees", ret)
 
# This code is contributed by
# Sanjit_Prasad

C#




// C# code to illustrate
// the use of cos function
using System;
 
class GFG
{
     
// Constant PI Declaration
static double PI = 3.142;
 
// Driver Code
static public void Main ()
{
    double x, ret, val;
     
    x = 60.0;
    val = (int)PI / 180.0;
    ret = Math.Cos(x * val);
    Console.Write("The cosine of " +
                        x + " is ");
    Console.Write(ret);
    Console.WriteLine(" degrees");
         
    x = 90.0;
    val = (int)PI / 180.0;
    ret = Math.Cos(x * val);
    Console.Write("The cosine of " +
                        x + " is ");
    Console.Write(ret);
    Console.WriteLine(" degrees");
}
}
 
// This code is contributed
// by akt_mit

PHP




<?php
//PHP code to illustrate
// the use of cos function
 
$PI =3.14159265;
 
$x; $ret; $val;
 
$x = 60.0;
$val = $PI / 180.0;
$ret = cos( $x * $val );
echo "The cosine of is ", $x;
echo "degrees", $ret;
echo "\n";
 
$x = 90.0;
$val = $PI / 180.0;
$ret = cos( $x * $val );
echo "The cosine of is ", $x;
echo "degrees ", $ret;
     
// This code is contributed by aj_36
?>

Javascript




<script>
 
// javascript code to illustrate
// the use of cos function
    var PI = 3.142;
 
    var x, ret, val;
     
    x = 60.0;
    val = PI / 180.0;
    ret = Math.cos(x * val);
    document.write("The cosine of " +
                           x + " is ");
    document.write(ret.toFixed(5));
    document.write(" degrees");
    document.write("<br>"
     
    x = 90.0;
    val = PI / 180.0;
    ret = parseInt(Math.cos( x*val ));
    document.write("The cosine of " +
                           x + " is ");
    document.write(ret.toFixed(5));
    document.write(" degrees");
 
 
// This code contributed by shikhasingrajput
 
</script>
Output : 
The cosine of 60.000000 is 0.500000 degrees
The cosine of 90.000000 is 0.000000 degrees

 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.

My Personal Notes arrow_drop_up
Recommended Articles
Page :