Find the ln(X) and log10X with the help of expansion

Given a positive number x, the task is to find the natural log (ln) and log to the base 10 (log10) of this number with the help of expansion.

Example:

Input: x = 5
Output: ln 5.000 = 1.609
        log10 5.000 = 0.699

Input: x = 10
Output: ln 10.000 = 2.303
        log10 10.000 = 1.000

Approach:

  1. The expansion of natural logarithm of x (ln x) is:

  2. Therefore this series can be summed up as:
  3. Hence a function can be made to evaluate the nth term of the sequence for 1 ≤ x ≤ n
  4. Now to calculate log10 x, below formula can be used:

Below is the implementation of the above approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// CPP code to Find the ln x and
// log<sub>10</sub> x with the help of expansion
  
#include <cmath>
#include <iomanip>
#include <iostream>
  
using namespace std;
  
// Function to calculate ln x using expansion
double calculateLnx(double n)
{
  
    double num, mul, cal, sum = 0;
    num = (n - 1) / (n + 1);
  
    // terminating value of the loop
    // can be increased to improve the precision
    for (int i = 1; i <= 1000; i++) {
        mul = (2 * i) - 1;
        cal = pow(num, mul);
        cal = cal / mul;
        sum = sum + cal;
    }
    sum = 2 * sum;
    return sum;
}
  
// Function to calculate log10 x
double calculateLogx(double lnx)
{
    return (lnx / 2.303);
}
  
// Driver Code
int main()
{
  
    double lnx, logx, n = 5;
    lnx = calculateLnx(n);
    logx = calculateLogx(lnx);
  
    // setprecision(3) is used to display
    // the output up to 3 decimal places
  
    cout << fixed << setprecision(3)
         << "ln " << n << " = "
         << lnx << endl;
    cout << fixed << setprecision(3)
         << "log10 " << n << " = "
         << logx << endl;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java code to Find the ln x and
// log<sub>10</sub> x with the help of expansion
import java.io.*;
  
class GFG 
{
      
// Function to calculate ln x using expansion
static double calculateLnx(double n)
{
    double num, mul, cal, sum = 0;
    num = (n - 1) / (n + 1);
  
    // terminating value of the loop
    // can be increased to improve the precision
    for (int i = 1; i <= 1000; i++) 
    {
        mul = (2 * i) - 1;
        cal = Math.pow(num, mul);
        cal = cal / mul;
        sum = sum + cal;
    }
    sum = 2 * sum;
    return sum;
}
  
// Function to calculate log10 x
static double calculateLogx(double lnx)
{
    return (lnx / 2.303);
}
  
// Driver Code
public static void main (String[] args) 
{
    double lnx, logx, n = 5;
    lnx = calculateLnx(n);
    logx = calculateLogx(lnx);
      
    // setprecision(3) is used to display
    // the output up to 3 decimal places
      
    System.out.println ("ln " + n + " = " + lnx );
    System.out.println ("log10 " + n + " = "+ logx );
}
}
  
// This code is contributed by ajit 

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python 3 code to Find the ln x and
# log<sub>10</sub> x with the help of expansion
# Function to calculate ln x using expansion
from math import pow
def calculateLnx(n):
    sum = 0
    num = (n - 1) / (n + 1)
  
    # terminating value of the loop
    # can be increased to improve the precision
    for i in range(1, 1001, 1):
        mul = (2 * i) - 1
        cal = pow(num, mul)
        cal = cal / mul
        sum = sum + cal
  
    sum = 2 * sum
    return sum
  
# Function to calculate log10 x
def calculateLogx(lnx):
    return (lnx / 2.303)
  
# Driver Code
if __name__ == '__main__':
    n = 5
    lnx = calculateLnx(n)
    logx = calculateLogx(lnx)
  
    # setprecision(3) is used to display
    # the output up to 3 decimal places
  
    print("ln", "{0:.3f}".format(n), 
           "=", "{0:.3f}".format(lnx))
    print("log10", "{0:.3f}".format(n), 
              "=", "{0:.3f}".format(logx))
      
# This code is contributed by
# Surendra_Gangwar

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# code to Find the ln x and
// log<sub>10</sub> x with the help of expansion
using System;
      
class GFG 
{
      
// Function to calculate ln x using expansion
static double calculateLnx(double n)
{
    double num, mul, cal, sum = 0;
    num = (n - 1) / (n + 1);
  
    // terminating value of the loop
    // can be increased to improve the precision
    for (int i = 1; i <= 1000; i++) 
    {
        mul = (2 * i) - 1;
        cal = Math.Pow(num, mul);
        cal = cal / mul;
        sum = sum + cal;
    }
    sum = 2 * sum;
    return sum;
}
  
// Function to calculate log10 x
static double calculateLogx(double lnx)
{
    return (lnx / 2.303);
}
  
// Driver Code
public static void Main (String[] args) 
{
    double lnx, logx, n = 5;
    lnx = calculateLnx(n);
    logx = calculateLogx(lnx);
      
    // setprecision(3) is used to display
    // the output up to 3 decimal places
      
    Console.WriteLine("ln " + n + " = " + lnx );
    Console.WriteLine("log10 " + n + " = "+ logx );
}
}
  
// This code is contributed by Princi Singh

chevron_right


Output:

ln 5.000 = 1.609
log10 5.000 = 0.699


My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.





Article Tags :
Practice Tags :


Be the First to upvote.


Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.