Given two numbers n, r ( n>=r ). The task is to find the value of C(n, r) for big value of n.
Examples:
Input: n = 30, r = 15
Output: 155117520
C(30, 15) is 155117520 by 30!/((30-15)!*15!)
Input: n = 50, r = 25
Output: 126410606437752
Approach: A simple code can be created with the following knowledge that :
C(n, r) = [n * (n-1) * .... * (n-r+1)] / [r * (r-1) * .... * 1]
However, for big values of n, r the products may overflow, hence during each iteration we divide the current variables holding value of products by their gcd.
Below is the required implementation:
C++
#include <bits/stdc++.h>
using namespace std;
void printNcR( int n, int r)
{
long long p = 1, k = 1;
if (n - r < r)
r = n - r;
if (r != 0) {
while (r) {
p *= n;
k *= r;
long long m = __gcd(p, k);
p /= m;
k /= m;
n--;
r--;
}
}
else
p = 1;
cout << p << endl;
}
int main()
{
int n = 50, r = 25;
printNcR(n, r);
return 0;
}
|
Java
class GFG {
static void printNcR( int n, int r)
{
long p = 1 , k = 1 ;
if (n - r < r) {
r = n - r;
}
if (r != 0 ) {
while (r > 0 ) {
p *= n;
k *= r;
long m = __gcd(p, k);
p /= m;
k /= m;
n--;
r--;
}
}
else {
p = 1 ;
}
System.out.println(p);
}
static long __gcd( long n1, long n2)
{
long gcd = 1 ;
for ( int i = 1 ; i <= n1 && i <= n2; ++i) {
if (n1 % i == 0 && n2 % i == 0 ) {
gcd = i;
}
}
return gcd;
}
public static void main(String[] args)
{
int n = 50 , r = 25 ;
printNcR(n, r);
}
}
|
Python3
from math import *
def printNcR(n, r):
p = 1
k = 1
if (n - r < r):
r = n - r
if (r ! = 0 ):
while (r):
p * = n
k * = r
m = gcd(p, k)
p / / = m
k / / = m
n - = 1
r - = 1
else :
p = 1
print (p)
if __name__ = = "__main__" :
n = 50
r = 25
printNcR(n, r)
|
C#
using System;
public class GFG {
static void printNcR( int n, int r)
{
long p = 1, k = 1;
if (n - r < r) {
r = n - r;
}
if (r != 0) {
while (r > 0) {
p *= n;
k *= r;
long m = __gcd(p, k);
p /= m;
k /= m;
n--;
r--;
}
}
else {
p = 1;
}
Console.WriteLine(p);
}
static long __gcd( long n1, long n2)
{
long gcd = 1;
for ( int i = 1; i <= n1 && i <= n2; ++i) {
if (n1 % i == 0 && n2 % i == 0) {
gcd = i;
}
}
return gcd;
}
static public void Main()
{
int n = 50, r = 25;
printNcR(n, r);
}
}
|
PHP
<?php
function printNcR( $n , $r ) {
$p = 1;
$k = 1;
if ( $n - $r < $r ) {
$r = $n - $r ;
}
if ( $r != 0) {
while ( $r > 0) {
$p *= $n ;
$k *= $r ;
$m = __gcd( $p , $k );
$p /= $m ;
$k /= $m ;
$n --;
$r --;
}
} else {
$p = 1;
}
echo ( $p );
}
function __gcd( $n1 , $n2 ) {
$gcd = 1;
for ( $i = 1; $i <= $n1 && $i <= $n2 ; ++ $i ) {
if ( $n1 % $i == 0 && $n2 % $i == 0) {
$gcd = $i ;
}
}
return $gcd ;
}
$n = 50;
$r = 25;
printNcR( $n , $r );
?>
|
Javascript
<script>
function __gcd(n1, n2)
{
var gcd = 1;
for ( var i = 1; i <= n1 && i <= n2; ++i) {
if (n1 % i == 0 && n2 % i == 0) {
gcd = i;
}
}
return gcd;
}
function printNcR(n, r)
{
var p = 1, k = 1;
if (n - r < r)
r = n - r;
if (r != 0) {
while (r) {
p *= n;
k *= r;
var m = __gcd(p, k);
p /= m;
k /= m;
n--;
r--;
}
}
else
p = 1;
document.write(p);
}
var n = 50, r = 25;
printNcR(n, r);
</script>
|
Time Complexity: O( R Log N)
Auxiliary Space: O(1), since no extra space has been taken.
Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!
Last Updated :
20 Aug, 2022
Like Article
Save Article