# Program to calculate the Area and Perimeter of Incircle of an Equilateral Triangle

Given the length of sides of an equilateral triangle, the task is to find the area and perimeter of Incircle of the given equilateral triangle.

Examples:

Input: side = 6
Output: Area = 9.4. Perimeter = 10.88

Input: side = 9
Output: Area = 21.21, Perimeter = 16.32


Properties of an Incircle are:

• The center of the Incircle is same as the center of the triangle i.e. the point where the medians of the equilateral triangle intersect.
• Inscribed circle of an equilateral triangle is made through the midpoint of the edges of an equilateral triangle.
• The Inradius of an Incircle of an equilateral triangle can be calculated using the formula: ,


where is the length of the side of equilateral triangle.

• Below image shows an equilateral triangle with incircle: • Approach:

Area of circle = and perimeter of circle = , where r is the radius of given circle.

Also the radius of Incircle of an equilateral triangle = (side of the equilateral triangle)/ 3.
Therefore,

1. The formula used to calculate the area of Incircle using Inradius is: 2. The formula used to calculate the perimeter of Incircle using Inradius is: 3. ## C

 // C program to find the area of Inscribed circle   // of equilateral triangle  #include  #include  #define PI 3.14159265     // function to find area of inscribed circle  float area_inscribed(float a)  {      return (a * a * (PI / 12));  }     // function to find Perimeter of inscribed circle  float perm_inscribed(float a)  {      return (PI * (a / sqrt(3)));  }     // Driver code  int main()  {      float a = 6;      printf("Area of inscribed circle is :%f\n",             area_inscribed(a));         printf("Perimeter of inscribed circle is :%f",             perm_inscribed(a));         return 0;  }

## Java

 // Java code to find the area of inscribed  // circle of equilateral triangle  import java.lang.*;     class GFG {         static double PI = 3.14159265;         // function to find the area of      // inscribed circle      public static double area_inscribed(double a)      {          return (a * a * (PI / 12));      }         // function to find the perimeter of      // inscribed circle      public static double perm_inscribed(double a)      {          return (PI * (a / Math.sqrt(3)));      }         // Driver code      public static void main(String[] args)      {          double a = 6.0;          System.out.println("Area of inscribed circle is :"                            + area_inscribed(a));             System.out.println("\nPerimeter of inscribed circle is :"                            + perm_inscribed(a));      }  }

## Python3

 # Python3 code to find the area of inscribed   # circle of equilateral triangle  import math  PI = 3.14159265        # Function to find the area of   # inscribed circle  def area_inscribed(a):      return (a * a * (PI / 12))     # Function to find the perimeter of   # inscribed circle  def perm_inscribed(a):      return ( PI * (a / math.sqrt(3) ) )            # Driver code  a = 6.0 print("Area of inscribed circle is :% f"                         % area_inscribed(a))  print("\nPerimeter of inscribed circle is :% f"                         % perm_inscribed(a))

## C#

 // C# code to find the area of  // inscribed circle  // of equilateral triangle  using System;     class GFG {      static double PI = 3.14159265;         // function to find the area of      // inscribed circle      public static double area_inscribed(double a)      {          return (a * a * (PI / 12));      }         // function to find the perimeter of      // inscribed circle      public static double perm_inscribed(double a)      {          return (PI * (a / Math.Sqrt(3)));      }         // Driver code      public static void Main()      {          double a = 6.0;          Console.Write("Area of inscribed circle is :"                       + area_inscribed(a));             Console.Write("\nPerimeter of inscribed circle is :"                       + perm_inscribed(a));      }  }

## PHP

 

Output:

Area of inscribed circle is :9.424778
Perimeter of inscribed circle is :10.882796


My Personal Notes arrow_drop_up Techie Geek

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.