Given a matrix and a scalar element k, our task is to find out the scalar product of that matrix.
Examples:
Input : mat[][] = {{2, 3}
{5, 4}}
k = 5
Output : 10 15
25 20
We multiply 5 with every element.
Input : 1 2 3
4 5 6
7 8 9
k = 4
Output : 4 8 12
16 20 24
28 32 36
The scalar multiplication of a number k(scalar), multiply it on every entry in the matrix. and a matrix A is the matrix kA.
C
#include <stdio.h>
#define N 3
void scalarProductMat( int mat[][N], int k)
{
for ( int i = 0; i < N; i++)
for ( int j = 0; j < N; j++)
mat[i][j] = mat[i][j] * k;
}
int main()
{
int mat[N][N] = { { 1, 2, 3 },
{ 4, 5, 6 },
{ 7, 8, 9 } };
int k = 4;
scalarProductMat(mat, k);
printf ( "Scalar Product Matrix is : \n" );
for ( int i = 0; i < N; i++) {
for ( int j = 0; j < N; j++)
printf ( "%d " , mat[i][j]);
printf ( "\n" );
}
return 0;
}
|
C++
#include <bits/stdc++.h>
using namespace std;
#define N 3
void scalarProductMat( int mat[][N], int k)
{
for ( int i = 0; i < N; i++)
for ( int j = 0; j < N; j++)
mat[i][j] = mat[i][j] * k;
}
int main()
{
int mat[N][N]
= { { 1, 2, 3 }, { 4, 5, 6 }, { 7, 8, 9 } };
int k = 4;
scalarProductMat(mat, k);
printf ( "Scalar Product Matrix is : \n" );
for ( int i = 0; i < N; i++) {
for ( int j = 0; j < N; j++)
cout<< mat[i][j]<< " " ;
cout << endl;
}
return 0;
}
|
Java
import java.io.*;
class GFG {
static final int N = 3 ;
static void scalarProductMat( int mat[][],
int k)
{
for ( int i = 0 ; i < N; i++)
for ( int j = 0 ; j < N; j++)
mat[i][j] = mat[i][j] * k;
}
public static void main (String[] args)
{
int mat[][] = { { 1 , 2 , 3 },
{ 4 , 5 , 6 },
{ 7 , 8 , 9 } };
int k = 4 ;
scalarProductMat(mat, k);
System.out.println( "Scalar Product Matrix is : " );
for ( int i = 0 ; i < N; i++)
{
for ( int j = 0 ; j < N; j++)
System.out.print(mat[i][j] + " " );
System.out.println();
}
}
}
|
Python 3
N = 3
def scalarProductMat( mat, k):
for i in range ( N):
for j in range ( N):
mat[i][j] = mat[i][j] * k
if __name__ = = "__main__" :
mat = [[ 1 , 2 , 3 ],
[ 4 , 5 , 6 ],
[ 7 , 8 , 9 ]]
k = 4
scalarProductMat(mat, k)
print ( "Scalar Product Matrix is : " )
for i in range (N):
for j in range (N):
print (mat[i][j], end = " " )
print ()
|
C#
using System;
class GFG{
static int N = 3;
static void scalarProductMat( int [,] mat,
int k)
{
for ( int i = 0; i < N; i++)
for ( int j = 0; j < N; j++)
mat[i,j] = mat[i, j] * k;
}
static public void Main ()
{
int [,] mat = {{1, 2, 3},
{4, 5, 6},
{7, 8, 9}};
int k = 4;
scalarProductMat(mat, k);
Console.WriteLine( "Scalar Product Matrix is : " );
for ( int i = 0; i < N; i++) {
for ( int j = 0; j < N; j++)
Console.Write(mat[i, j] + " " );
Console.WriteLine();
}
}
}
|
PHP
<?php
function scalarProductMat( $mat ,
$k )
{
$N = 3;
for ( $i = 0; $i < $N ; $i ++)
for ( $j = 0; $j < $N ; $j ++)
$mat [ $i ][ $j ] = $mat [ $i ][ $j ] * $k ;
return $mat ;
}
$N = 3;
$mat = array ( array (1, 2, 3 ),
array ( 4, 5, 6 ),
array (7, 8, 9 ));
$k = 4;
$mat1 = scalarProductMat( $mat , $k );
echo ( "Scalar Product Matrix is : " . "\n" );
for ( $i = 0; $i < $N ; $i ++)
{
for ( $j = 0; $j < $N ; $j ++)
echo ( $mat1 [ $i ][ $j ] . " " );
echo "\n" ;
}
|
Javascript
<script>
N = 3
function scalarProductMat(mat, k)
{
for ( var i = 0; i < N; i++)
for ( var j = 0; j < N; j++)
mat[i][j] = mat[i][j] * k;
}
var mat = [ [ 1, 2, 3 ],
[ 4, 5, 6 ],
[ 7, 8, 9 ] ];
var k = 4;
scalarProductMat(mat, k);
document.write( "Scalar Product Matrix is : <br>" );
for ( var i = 0; i < N; i++)
{
for ( var j = 0; j < N; j++)
document.write(mat[i][j]+ " " );
document.write( "<br>" );
}
</script>
|
Output:
Scalar Product Matrix is :
4 8 12
16 20 24
28 32 36
Time Complexity: O(n2),
Auxiliary Space: O(1), since no extra space has been taken.
Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!
Last Updated :
01 Mar, 2023
Like Article
Save Article