# Sum of middle row and column in Matrix

Given an integer matrix of odd dimensions (3 * 3, 5 * 5). then the task is to find the sum of the middle row & column elements.

Examples:

```Input :  2 5 7
3 7 2
5 6 9
Output : Sum of middle row = 12
Sum of middle column = 18

Input :  1 3 5 6 7
3 5 3 2 1
1 2 3 4 5
7 9 2 1 6
9 1 5 3 2
Output : Sum of middle row = 15
Sum of middle column = 18```

Implementation:

## CPP

 `// C++ program to find sum of ` `// middle row and column in matrix` `#include ` `using` `namespace` `std;` `const` `int` `MAX = 100;`   `void` `middlesum(``int` `mat[][MAX], ``int` `n)` `{`   `    ``int`  `row_sum = 0, col_sum = 0;` `    `  `    ``//loop for sum of row` `    ``for` `(``int` `i = 0; i < n; i++)` `        ``row_sum += mat[n / 2][i];` `    `  `    ``cout << ``"Sum of middle row = "` `                    ``<< row_sum<

## Java

 `// java  program to find sum of ` `// middle row and column in matrix`   `import` `java.io.*;`   `class` `GFG {` `    `    `static`  `int` `MAX = ``100``;`   ` ``static` `void` `middlesum(``int` `mat[][], ``int` `n)` `{`   `    ``int` `row_sum = ``0``, col_sum = ``0``;` `    `  `    ``// loop for sum of row` `    ``for` `(``int` `i = ``0``; i < n; i++)` `        ``row_sum += mat[n / ``2``][i];` `    `  `    ``System.out.println ( ``"Sum of middle row = "` `                  ``+ row_sum);` `    `  `    ``// loop for sum of column` `    ``for` `(``int` `i = ``0``; i < n; i++)` `        ``col_sum += mat[i][n / ``2``];` `    `  `    ``System.out.println ( ``"Sum of middle column = "` `                 ``+ col_sum);` `}`   `// Driver function` `    ``public` `static` `void` `main (String[] args) {` `        ``int` `mat[][] = {{``2``, ``5``, ``7``},` `                    ``{``3``, ``7``, ``2``}, ` `                    ``{``5``, ``6``, ``9``}};` `    `  `        ``middlesum(mat, ``3``);` `    `  `    ``}` `}`   `// This code is contributed by vt_m.`

## Python3

 `# Python program to find sum of ` `# middle row and column in matrix`   ` `  `def` `middlesum(mat,n):` ` `  `    ``row_sum ``=` `0` `    ``col_sum ``=` `0` `     `  `    ``# loop for sum of row` `    ``for` `i ``in` `range``(n):` `        ``row_sum ``+``=` `mat[n ``/``/` `2``][i]` `     `  `    ``print``(``"Sum of middle row = "``,` `                     ``row_sum)` `     `  `    ``# loop for sum of column` `    ``for` `i ``in` `range``(n):` `        ``col_sum ``+``=` `mat[i][n ``/``/` `2``]` `     `  `    ``print``(``"Sum of middle column = "``,` `                            ``col_sum)`   `# Driver code` `mat``=` `[[``2``, ``5``, ``7``],` `     ``[``3``, ``7``, ``2``], ` `     ``[``5``, ``6``, ``9``]]` `     `  `middlesum(mat, ``3``)`   `# This code is contributed` `# by Anant Agarwal.`

## C#

 `// C# program to find sum of ` `// middle row and column in matrix` `using` `System;`   `class` `GFG {` `    `    `    ``//static int MAX = 100;` `    `  `    ``static` `void` `middlesum(``int` `[,]mat, ``int` `n)` `    ``{` `    `  `        ``int` `row_sum = 0, col_sum = 0;` `        `  `        ``// loop for sum of row` `        ``for` `(``int` `i = 0; i < n; i++)` `            ``row_sum += mat[n / 2, i];` `        `  `        ``Console.WriteLine ( ``"Sum of middle row = "` `                    ``+ row_sum);` `        `  `        ``// loop for sum of column` `        ``for` `(``int` `i = 0; i < n; i++)` `            ``col_sum += mat[i, n / 2];` `        `  `        ``Console.WriteLine ( ``"Sum of middle column = "` `                            ``+ col_sum);` `    ``}`   `    ``// Driver function` `    ``public` `static` `void` `Main () {` `        ``int` `[,]mat = {{2, 5, 7},` `                    ``{3, 7, 2}, ` `                    ``{5, 6, 9}};` `    `  `        ``middlesum(mat, 3);` `    `  `    ``}` `}`   `// This code is contributed by vt_m.`

## PHP

 ``

## Javascript

 ``

Output

```Sum of middle row = 12
Sum of middle column = 18```

Time Complexity : O(n)
Auxiliary Space: O(1) using constant space to initialize row_sum and col_sum variables, since no extra space has been taken.

Using Stl:

Here we use the accumulate function to do it.

For JavaScript:

Here we use the reduce function to do it.

## C++

 `#include ` `#include` `using` `namespace` `std;`   `int` `main() {` `    ``vector>v{{2, 5, 7},` `                         ``{3, 7, 2},` `                         ``{5, 6, 9}};` `    ``int` `n=v.size();` `    ``cout<<``"The sum of all the element in middle row : "``<

## Java

 `import` `java.util.Arrays;`   `public` `class` `Main {` `    ``public` `static` `void` `main(String[] args) {` `        ``int``[][] v = {{``2``, ``5``, ``7``},` `                     ``{``3``, ``7``, ``2``},` `                     ``{``5``, ``6``, ``9``}};` `        ``int` `n = v.length;` `        ``System.out.println(``"The sum of all the element in middle row : "``);` `        ``System.out.println(Arrays.stream(v[n/``2``]).sum());` `        ``for``(``int` `i = ``0``; i < n; i++)` `            ``for``(``int` `j = i + ``1``; j < n; j++) {` `                ``int` `temp = v[i][j];` `                ``v[i][j] = v[j][i];` `                ``v[j][i] = temp;` `            ``}` `       ``System.out.println(``"The sum of all the element in middle column : "``);` `       ``System.out.println(Arrays.stream(v[n/``2``]).sum());` `    ``}` `}`

## Python3

 `# Python code to implement the above approach` `v ``=` `[[``2``, ``5``, ``7``],` `     ``[``3``, ``7``, ``2``],` `     ``[``5``, ``6``, ``9``]]` `n ``=` `len``(v)`   `print``(``"The sum of all the element in middle row : "``)` `print``(``sum``(v[n``/``/``2``]))`   `for` `i ``in` `range``(n):` `    ``for` `j ``in` `range``(i``+``1``,n):` `        ``v[i][j],v[j][i] ``=` `v[j][i],v[i][j]` `        `  `print``(``"The sum of all the element in middle column : "``)` `print``(``sum``(v[n``/``/``2``]))`

## Javascript

 `// JavaScript code to implement the above approach` `var` `v = [[2, 5, 7],` `         ``[3, 7, 2],` `         ``[5, 6, 9]];` `var` `n = v.length;`   `console.log(``"The sum of all the element in middle row : "``);` `console.log(v[Math.floor(n/2)].reduce((a,b)=>a+b,0));`   `for``(``var` `i=0;ia+b,0));`   `// contributed by rishabh`

## C#

 `using` `System;` `using` `System.Collections.Generic;` `using` `System.Linq;`   `class` `Program {` `    ``static` `void` `Main(``string``[] args) {` `        ``List> v = ``new` `List> {` `            ``new` `List<``int``> { 2, 5, 7 },` `            ``new` `List<``int``> { 3, 7, 2 },` `            ``new` `List<``int``> { 5, 6, 9 }` `        ``};` `        ``int` `n = v.Count;` `        ``Console.WriteLine(``"The sum of all the element in middle row : "``);` `        ``Console.WriteLine(v[n / 2].Sum());` `        ``for` `(``int` `i = 0; i < n; i++) {` `            ``for` `(``int` `j = i + 1; j < n; j++) {` `                ``int` `temp = v[i][j];` `                ``v[i][j] = v[j][i];` `                ``v[j][i] = temp;` `            ``}` `        ``}` `        ``Console.WriteLine(``"The sum of all the element in middle column : "``);` `        ``Console.WriteLine(v[n / 2].Sum());` `    ``}` `}` `// This code is contributed by user_dtewbxkn77n`

Output

```The sum of all the element in middle row :
12
The sum of all the element in middle column :
18```

The accumulated value of f applications. Complexity: O(nÃ—k), where n is the distance from first to last , O(k) is complexity of f function.

Time Complexity: O(n*k).
Auxiliary Space : O(k)

Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!

Previous
Next