Skip to content
Related Articles

Related Articles

Divide and Conquer | Set 5 (Strassen’s Matrix Multiplication)

View Discussion
Improve Article
Save Article
Like Article
  • Difficulty Level : Medium
  • Last Updated : 23 Jun, 2022

Given two square matrices A and B of size n x n each, find their multiplication matrix. 

Naive Method: Following is a simple way to multiply two matrices. 

C++




void multiply(int A[][N], int B[][N], int C[][N])
{
    for (int i = 0; i < N; i++)
    {
        for (int j = 0; j < N; j++)
        {
            C[i][j] = 0;
            for (int k = 0; k < N; k++)
            {
                C[i][j] += A[i][k]*B[k][j];
            }
        }
    }
}
 
// This code is contributed by noob2000.

C




void multiply(int A[][N], int B[][N], int C[][N])
{
    for (int i = 0; i < N; i++)
    {
        for (int j = 0; j < N; j++)
        {
            C[i][j] = 0;
            for (int k = 0; k < N; k++)
            {
                C[i][j] += A[i][k]*B[k][j];
            }
        }
    }
}

Java




// java code
static int multiply(int A[][N], int B[][N], int C[][N])
{
    for (int i = 0; i < N; i++)
    {
        for (int j = 0; j < N; j++)
        {
            C[i][j] = 0;
            for (int k = 0; k < N; k++)
            {
                C[i][j] += A[i][k]*B[k][j];
            }
        }
    }
}
 
// This code is contributed by shivanisinghss2110

Python3




def multiply(A, B, C):
 
    for i in range(N):
     
        for j in range( N):
         
            C[i][j] = 0
            for k in range(N):
             
                C[i][j] += A[i][k]*B[k][j]
 
# this code is contributed by shivanisinghss2110

C#




// C# code
static int multiply(int A[,N], int B[,N], int C[,N])
{
    for (int i = 0; i < N; i++)
    {
        for (int j = 0; j < N; j++)
        {
            C[i,j] = 0;
            for (int k = 0; k < N; k++)
            {
                C[i,j] += A[i,k]*B[k,j];
            }
        }
    }
}
 
// This code is contributed by rutvik_56.

Javascript




<script>
 
function multiply(A, B, C)
{
    for (var i = 0; i < N; i++)
    {
        for (var j = 0; j < N; j++)
        {
            C[i][j] = 0;
            for (var k = 0; k < N; k++)
            {
                C[i][j] += A[i][k]*B[k][j];
            }
        }
    }
}
 
</script>

Time Complexity of above method is O(N3). 

 

Divide and Conquer :

Following is simple Divide and Conquer method to multiply two square matrices. 

  1. Divide matrices A and B in 4 sub-matrices of size N/2 x N/2 as shown in the below diagram. 
  2. Calculate following values recursively. ae + bg, af + bh, ce + dg and cf + dh. 

strassen_new

Implementation:

C++




#include <bits/stdc++.h>
using namespace std;
 
#define ROW_1 4
#define COL_1 4
 
#define ROW_2 4
#define COL_2 4
 
void print(string display, vector<vector<int> > matrix,
           int start_row, int start_column, int end_row,
           int end_column)
{
    cout << endl << display << " =>" << endl;
    for (int i = start_row; i <= end_row; i++) {
        for (int j = start_column; j <= end_column; j++) {
            cout << setw(10);
            cout << matrix[i][j];
        }
        cout << endl;
    }
    cout << endl;
    return;
}
 
void add_matrix(vector<vector<int> > matrix_A,
                vector<vector<int> > matrix_B,
                vector<vector<int> >& matrix_C,
                int split_index)
{
    for (auto i = 0; i < split_index; i++)
        for (auto j = 0; j < split_index; j++)
            matrix_C[i][j]
                = matrix_A[i][j] + matrix_B[i][j];
}
 
vector<vector<int> >
multiply_matrix(vector<vector<int> > matrix_A,
                vector<vector<int> > matrix_B)
{
    int col_1 = matrix_A[0].size();
    int row_1 = matrix_A.size();
    int col_2 = matrix_B[0].size();
    int row_2 = matrix_B.size();
 
    if (col_1 != row_2) {
        cout << "\nError: The number of columns in Matrix "
                "A  must be equal to the number of rows in "
                "Matrix B\n";
        return {};
    }
 
    vector<int> result_matrix_row(col_2, 0);
    vector<vector<int> > result_matrix(row_1,
                                       result_matrix_row);
 
    if (col_1 == 1)
        result_matrix[0][0]
            = matrix_A[0][0] * matrix_B[0][0];
    else {
        int split_index = col_1 / 2;
 
        vector<int> row_vector(split_index, 0);
        vector<vector<int> > result_matrix_00(split_index,
                                              row_vector);
        vector<vector<int> > result_matrix_01(split_index,
                                              row_vector);
        vector<vector<int> > result_matrix_10(split_index,
                                              row_vector);
        vector<vector<int> > result_matrix_11(split_index,
                                              row_vector);
 
        vector<vector<int> > a00(split_index, row_vector);
        vector<vector<int> > a01(split_index, row_vector);
        vector<vector<int> > a10(split_index, row_vector);
        vector<vector<int> > a11(split_index, row_vector);
        vector<vector<int> > b00(split_index, row_vector);
        vector<vector<int> > b01(split_index, row_vector);
        vector<vector<int> > b10(split_index, row_vector);
        vector<vector<int> > b11(split_index, row_vector);
 
        for (auto i = 0; i < split_index; i++)
            for (auto j = 0; j < split_index; j++) {
                a00[i][j] = matrix_A[i][j];
                a01[i][j] = matrix_A[i][j + split_index];
                a10[i][j] = matrix_A[split_index + i][j];
                a11[i][j] = matrix_A[i + split_index]
                                    [j + split_index];
                b00[i][j] = matrix_B[i][j];
                b01[i][j] = matrix_B[i][j + split_index];
                b10[i][j] = matrix_B[split_index + i][j];
                b11[i][j] = matrix_B[i + split_index]
                                    [j + split_index];
            }
 
        add_matrix(multiply_matrix(a00, b00),
                   multiply_matrix(a01, b10),
                   result_matrix_00, split_index);
        add_matrix(multiply_matrix(a00, b01),
                   multiply_matrix(a01, b11),
                   result_matrix_01, split_index);
        add_matrix(multiply_matrix(a10, b00),
                   multiply_matrix(a11, b10),
                   result_matrix_10, split_index);
        add_matrix(multiply_matrix(a10, b01),
                   multiply_matrix(a11, b11),
                   result_matrix_11, split_index);
 
        for (auto i = 0; i < split_index; i++)
            for (auto j = 0; j < split_index; j++) {
                result_matrix[i][j]
                    = result_matrix_00[i][j];
                result_matrix[i][j + split_index]
                    = result_matrix_01[i][j];
                result_matrix[split_index + i][j]
                    = result_matrix_10[i][j];
                result_matrix[i + split_index]
                             [j + split_index]
                    = result_matrix_11[i][j];
            }
 
        result_matrix_00.clear();
        result_matrix_01.clear();
        result_matrix_10.clear();
        result_matrix_11.clear();
        a00.clear();
        a01.clear();
        a10.clear();
        a11.clear();
        b00.clear();
        b01.clear();
        b10.clear();
        b11.clear();
    }
    return result_matrix;
}
 
int main()
{
    vector<vector<int> > matrix_A = { { 1, 1, 1, 1 },
                                      { 2, 2, 2, 2 },
                                      { 3, 3, 3, 3 },
                                      { 2, 2, 2, 2 } };
 
    print("Array A", matrix_A, 0, 0, ROW_1 - 1, COL_1 - 1);
 
    vector<vector<int> > matrix_B = { { 1, 1, 1, 1 },
                                      { 2, 2, 2, 2 },
                                      { 3, 3, 3, 3 },
                                      { 2, 2, 2, 2 } };
 
    print("Array B", matrix_B, 0, 0, ROW_2 - 1, COL_2 - 1);
 
    vector<vector<int> > result_matrix(
        multiply_matrix(matrix_A, matrix_B));
 
    print("Result Array", result_matrix, 0, 0, ROW_1 - 1,
          COL_2 - 1);
}
 
// Time Complexity: O(n^3)
// Code Contributed By: lucasletum

Java




//Java program to find the resultant
//product matrix for a given pair of matrices
//using Divide and Conquer Approach
 
import java.io.*;
import java.util.*;
 
class GFG {
 
  static int ROW_1 = 4,COL_1 = 4, ROW_2 = 4, COL_2 = 4;
 
  public static void printMat(int[][] a, int r, int c){
    for(int i=0;i<r;i++){
      for(int j=0;j<c;j++){
        System.out.print(a[i][j]+" ");
      }
      System.out.println("");
    }
    System.out.println("");
  }
 
  public static void print(String display, int[][] matrix,int start_row, int start_column, int end_row,int end_column)
  {
    System.out.println(display + " =>\n");
    for (int i = start_row; i <= end_row; i++) {
      for (int j = start_column; j <= end_column; j++) {
        //cout << setw(10);
        System.out.print(matrix[i][j]+" ");
      }
      System.out.println("");
    }
    System.out.println("");
  }
 
  public static void add_matrix(int[][] matrix_A,int[][] matrix_B,int[][] matrix_C, int split_index)
  {
    for (int i = 0; i < split_index; i++){
      for (int j = 0; j < split_index; j++){
        matrix_C[i][j] = matrix_A[i][j] + matrix_B[i][j];
      }
    }
  }
 
  public static void initWithZeros(int a[][], int r, int c){
    for(int i=0;i<r;i++){
      for(int j=0;j<c;j++){
        a[i][j]=0;
      }
    }
  }
 
  public static int[][] multiply_matrix(int[][] matrix_A,int[][] matrix_B)
  {
    int col_1 = matrix_A[0].length;
    int row_1 = matrix_A.length;
    int col_2 = matrix_B[0].length;
    int row_2 = matrix_B.length;
 
    if (col_1 != row_2) {
      System.out.println("\nError: The number of columns in Matrix A  must be equal to the number of rows in Matrix B\n");
      int temp[][] = new int[1][1];
      temp[0][0]=0;
      return temp;
    }
 
    int[] result_matrix_row = new int[col_2];
    Arrays.fill(result_matrix_row,0);
    int[][] result_matrix = new int[row_1][col_2];
    initWithZeros(result_matrix,row_1,col_2);
 
    if (col_1 == 1){
      result_matrix[0][0] = matrix_A[0][0] * matrix_B[0][0];
    }else {
      int split_index = col_1 / 2;
 
      int[] row_vector = new int[split_index];
      Arrays.fill(row_vector,0);
 
      int[][] result_matrix_00 = new int[split_index][split_index];
      int[][] result_matrix_01 = new int[split_index][split_index];
      int[][] result_matrix_10 = new int[split_index][split_index];
      int[][] result_matrix_11 = new int[split_index][split_index];
      initWithZeros(result_matrix_00,split_index,split_index);
      initWithZeros(result_matrix_01,split_index,split_index);
      initWithZeros(result_matrix_10,split_index,split_index);
      initWithZeros(result_matrix_11,split_index,split_index);
 
      int[][] a00 = new int[split_index][split_index];
      int[][] a01 = new int[split_index][split_index];
      int[][] a10 = new int[split_index][split_index];
      int[][] a11 = new int[split_index][split_index];
      int[][] b00 = new int[split_index][split_index];
      int[][] b01 = new int[split_index][split_index];
      int[][] b10 = new int[split_index][split_index];
      int[][] b11 = new int[split_index][split_index];
      initWithZeros(a00,split_index,split_index);
      initWithZeros(a01,split_index,split_index);
      initWithZeros(a10,split_index,split_index);
      initWithZeros(a11,split_index,split_index);
      initWithZeros(b00,split_index,split_index);
      initWithZeros(b01,split_index,split_index);
      initWithZeros(b10,split_index,split_index);
      initWithZeros(b11,split_index,split_index);
 
 
      for (int i = 0; i < split_index; i++){
        for (int j = 0; j < split_index; j++) {
          a00[i][j] = matrix_A[i][j];
          a01[i][j] = matrix_A[i][j + split_index];
          a10[i][j] = matrix_A[split_index + i][j];
          a11[i][j] = matrix_A[i + split_index][j + split_index];
          b00[i][j] = matrix_B[i][j];
          b01[i][j] = matrix_B[i][j + split_index];
          b10[i][j] = matrix_B[split_index + i][j];
          b11[i][j] = matrix_B[i + split_index][j + split_index];
        }
      }
 
      add_matrix(multiply_matrix(a00, b00),multiply_matrix(a01, b10),result_matrix_00, split_index);
      add_matrix(multiply_matrix(a00, b01),multiply_matrix(a01, b11),result_matrix_01, split_index);
      add_matrix(multiply_matrix(a10, b00),multiply_matrix(a11, b10),result_matrix_10, split_index);
      add_matrix(multiply_matrix(a10, b01),multiply_matrix(a11, b11),result_matrix_11, split_index);
 
      for (int i = 0; i < split_index; i++){
        for (int j = 0; j < split_index; j++) {
          result_matrix[i][j] = result_matrix_00[i][j];
          result_matrix[i][j + split_index] = result_matrix_01[i][j];
          result_matrix[split_index + i][j] = result_matrix_10[i][j];
          result_matrix[i + split_index] [j + split_index] = result_matrix_11[i][j];
        }
      }
    }
    return result_matrix;
  }
 
  public static void main (String[] args) {
    int[][] matrix_A = { { 1, 1, 1, 1 },
                        { 2, 2, 2, 2 },
                        { 3, 3, 3, 3 },
                        { 2, 2, 2, 2 } };
 
    System.out.println("Array A =>");
    printMat(matrix_A,4,4);
 
    int[][] matrix_B = { { 1, 1, 1, 1 },
                        { 2, 2, 2, 2 },
                        { 3, 3, 3, 3 },
                        { 2, 2, 2, 2 } };
 
    System.out.println("Array B =>");
    printMat(matrix_B,4,4);
 
    int[][] result_matrix =  multiply_matrix(matrix_A, matrix_B);
 
    System.out.println("Result Array =>");
    printMat(result_matrix,4,4);
  }
}
// Time Complexity: O(n^3)
//This code is contributed by shruti456rawal

Output

Array A =>
         1         1         1         1
         2         2         2         2
         3         3         3         3
         2         2         2         2


Array B =>
         1         1         1         1
         2         2         2         2
         3         3         3         3
         2         2         2         2


Result Array =>
         8         8         8         8
        16        16        16        16
        24        24        24        24
        16        16        16        16

In the above method, we do 8 multiplications for matrices of size N/2 x N/2 and 4 additions. Addition of two matrices takes O(N2) time. So the time complexity can be written as 

T(N) = 8T(N/2) + O(N2)  

From Master's Theorem, time complexity of above method is O(N3)
which is unfortunately same as the above naive method.

Simple Divide and Conquer also leads to O(N3), can there be a better way? 

In the above divide and conquer method, the main component for high time complexity is 8 recursive calls. The idea of Strassen’s method is to reduce the number of recursive calls to 7. Strassen’s method is similar to above simple divide and conquer method in the sense that this method also divide matrices to sub-matrices of size N/2 x N/2 as shown in the above diagram, but in Strassen’s method, the four sub-matrices of result are calculated using following formulae.
 

stressen_formula_new_new

Time Complexity of Strassen’s Method

Addition and Subtraction of two matrices takes O(N2) time. So time complexity can be written as 

T(N) = 7T(N/2) +  O(N2)

From Master's Theorem, time complexity of above method is 
O(NLog7) which is approximately O(N2.8074)

Generally Strassen’s Method is not preferred for practical applications for following reasons. 

  1. The constants used in Strassen’s method are high and for a typical application Naive method works better. 
  2. For Sparse matrices, there are better methods especially designed for them. 
  3. The submatrices in recursion take extra space. 
  4. Because of the limited precision of computer arithmetic on noninteger values, larger errors accumulate in Strassen’s algorithm than in Naive Method

Implementation:

C++




#include <bits/stdc++.h>
using namespace std;
 
#define ROW_1 4
#define COL_1 4
 
#define ROW_2 4
#define COL_2 4
 
void print(string display, vector<vector<int> > matrix,
           int start_row, int start_column, int end_row,
           int end_column)
{
    cout << endl << display << " =>" << endl;
    for (int i = start_row; i <= end_row; i++) {
        for (int j = start_column; j <= end_column; j++) {
            cout << setw(10);
            cout << matrix[i][j];
        }
        cout << endl;
    }
    cout << endl;
    return;
}
 
vector<vector<int> >
add_matrix(vector<vector<int> > matrix_A,
           vector<vector<int> > matrix_B, int split_index,
           int multiplier = 1)
{
    for (auto i = 0; i < split_index; i++)
        for (auto j = 0; j < split_index; j++)
            matrix_A[i][j]
                = matrix_A[i][j]
                  + (multiplier * matrix_B[i][j]);
    return matrix_A;
}
 
vector<vector<int> >
multiply_matrix(vector<vector<int> > matrix_A,
                vector<vector<int> > matrix_B)
{
    int col_1 = matrix_A[0].size();
    int row_1 = matrix_A.size();
    int col_2 = matrix_B[0].size();
    int row_2 = matrix_B.size();
 
    if (col_1 != row_2) {
        cout << "\nError: The number of columns in Matrix "
                "A  must be equal to the number of rows in "
                "Matrix B\n";
        return {};
    }
 
    vector<int> result_matrix_row(col_2, 0);
    vector<vector<int> > result_matrix(row_1,
                                       result_matrix_row);
 
    if (col_1 == 1)
        result_matrix[0][0]
            = matrix_A[0][0] * matrix_B[0][0];
    else {
        int split_index = col_1 / 2;
 
        vector<int> row_vector(split_index, 0);
 
        vector<vector<int> > a00(split_index, row_vector);
        vector<vector<int> > a01(split_index, row_vector);
        vector<vector<int> > a10(split_index, row_vector);
        vector<vector<int> > a11(split_index, row_vector);
        vector<vector<int> > b00(split_index, row_vector);
        vector<vector<int> > b01(split_index, row_vector);
        vector<vector<int> > b10(split_index, row_vector);
        vector<vector<int> > b11(split_index, row_vector);
 
        for (auto i = 0; i < split_index; i++)
            for (auto j = 0; j < split_index; j++) {
                a00[i][j] = matrix_A[i][j];
                a01[i][j] = matrix_A[i][j + split_index];
                a10[i][j] = matrix_A[split_index + i][j];
                a11[i][j] = matrix_A[i + split_index]
                                    [j + split_index];
                b00[i][j] = matrix_B[i][j];
                b01[i][j] = matrix_B[i][j + split_index];
                b10[i][j] = matrix_B[split_index + i][j];
                b11[i][j] = matrix_B[i + split_index]
                                    [j + split_index];
            }
 
        vector<vector<int> > p(multiply_matrix(
            a00, add_matrix(b01, b11, split_index, -1)));
        vector<vector<int> > q(multiply_matrix(
            add_matrix(a00, a01, split_index), b11));
        vector<vector<int> > r(multiply_matrix(
            add_matrix(a10, a11, split_index), b00));
        vector<vector<int> > s(multiply_matrix(
            a11, add_matrix(b10, b00, split_index, -1)));
        vector<vector<int> > t(multiply_matrix(
            add_matrix(a00, a11, split_index),
            add_matrix(b00, b11, split_index)));
        vector<vector<int> > u(multiply_matrix(
            add_matrix(a01, a11, split_index, -1),
            add_matrix(b10, b11, split_index)));
        vector<vector<int> > v(multiply_matrix(
            add_matrix(a00, a10, split_index, -1),
            add_matrix(b00, b01, split_index)));
 
        vector<vector<int> > result_matrix_00(add_matrix(
            add_matrix(add_matrix(t, s, split_index), u,
                       split_index),
            q, split_index, -1));
        vector<vector<int> > result_matrix_01(
            add_matrix(p, q, split_index));
        vector<vector<int> > result_matrix_10(
            add_matrix(r, s, split_index));
        vector<vector<int> > result_matrix_11(add_matrix(
            add_matrix(add_matrix(t, p, split_index), r,
                       split_index, -1),
            v, split_index, -1));
 
        for (auto i = 0; i < split_index; i++)
            for (auto j = 0; j < split_index; j++) {
                result_matrix[i][j]
                    = result_matrix_00[i][j];
                result_matrix[i][j + split_index]
                    = result_matrix_01[i][j];
                result_matrix[split_index + i][j]
                    = result_matrix_10[i][j];
                result_matrix[i + split_index]
                             [j + split_index]
                    = result_matrix_11[i][j];
            }
 
        a00.clear();
        a01.clear();
        a10.clear();
        a11.clear();
        b00.clear();
        b01.clear();
        b10.clear();
        b11.clear();
        p.clear();
        q.clear();
        r.clear();
        s.clear();
        t.clear();
        u.clear();
        v.clear();
        result_matrix_00.clear();
        result_matrix_01.clear();
        result_matrix_10.clear();
        result_matrix_11.clear();
    }
    return result_matrix;
}
 
int main()
{
    vector<vector<int> > matrix_A = { { 1, 1, 1, 1 },
                                      { 2, 2, 2, 2 },
                                      { 3, 3, 3, 3 },
                                      { 2, 2, 2, 2 } };
 
    print("Array A", matrix_A, 0, 0, ROW_1 - 1, COL_1 - 1);
 
    vector<vector<int> > matrix_B = { { 1, 1, 1, 1 },
                                      { 2, 2, 2, 2 },
                                      { 3, 3, 3, 3 },
                                      { 2, 2, 2, 2 } };
 
    print("Array B", matrix_B, 0, 0, ROW_2 - 1, COL_2 - 1);
 
    vector<vector<int> > result_matrix(
        multiply_matrix(matrix_A, matrix_B));
 
    print("Result Array", result_matrix, 0, 0, ROW_1 - 1,
          COL_2 - 1);
}
 
// Time Complexity: T(N) = 7T(N/2) +  O(N^2) => O(N^Log7)
// which is approximately O(N^2.8074) Code Contributed By:
// lucasletum

Python3




# Version 3.6
 
import numpy as np
 
def split(matrix):
    """
    Splits a given matrix into quarters.
    Input: nxn matrix
    Output: tuple containing 4 n/2 x n/2 matrices corresponding to a, b, c, d
    """
    row, col = matrix.shape
    row2, col2 = row//2, col//2
    return matrix[:row2, :col2], matrix[:row2, col2:], matrix[row2:, :col2], matrix[row2:, col2:]
 
def strassen(x, y):
    """
    Computes matrix product by divide and conquer approach, recursively.
    Input: nxn matrices x and y
    Output: nxn matrix, product of x and y
    """
 
    # Base case when size of matrices is 1x1
    if len(x) == 1:
        return x * y
 
    # Splitting the matrices into quadrants. This will be done recursively
    # until the base case is reached.
    a, b, c, d = split(x)
    e, f, g, h = split(y)
 
    # Computing the 7 products, recursively (p1, p2...p7)
    p1 = strassen(a, f - h) 
    p2 = strassen(a + b, h)       
    p3 = strassen(c + d, e)       
    p4 = strassen(d, g - e)       
    p5 = strassen(a + d, e + h)       
    p6 = strassen(b - d, g + h) 
    p7 = strassen(a - c, e + f) 
 
    # Computing the values of the 4 quadrants of the final matrix c
    c11 = p5 + p4 - p2 + p6 
    c12 = p1 + p2          
    c21 = p3 + p4           
    c22 = p1 + p5 - p3 - p7 
 
    # Combining the 4 quadrants into a single matrix by stacking horizontally and vertically.
    c = np.vstack((np.hstack((c11, c12)), np.hstack((c21, c22))))
 
    return c

Output

Array A =>
         1         1         1         1
         2         2         2         2
         3         3         3         3
         2         2         2         2


Array B =>
         1         1         1         1
         2         2         2         2
         3         3         3         3
         2         2         2         2


Result Array =>
         8         8         8         8
        16        16        16        16
        24        24        24        24
        16        16        16        16

Easy way to remember Strassen’s Matrix Equation
 

 

References: 
Introduction to Algorithms 3rd Edition by Clifford Stein, Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest 
https://www.youtube.com/watch?v=LOLebQ8nKHA 
https://www.youtube.com/watch?v=QXY4RskLQcI
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above
 


My Personal Notes arrow_drop_up
Recommended Articles
Page :

Start Your Coding Journey Now!