Print a given matrix in spiral form
Given a 2D array, print it in spiral form. See the following examples.
Examples:
Input: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Output: 1 2 3 4 8 12 16 15 14 13 9 5 6 7 11 10 Input: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 Output: 1 2 3 4 5 6 12 18 17 16 15 14 13 7 8 9 10 11
Approach: The above problem can be solved using four for loops which prints all the elements. Every for loop defines a single direction movement along with the matrix. The first for loop represents the movement from left to right, whereas the second crawl represents the movement from top to bottom, the third represents the movement from the right to left, and the fourth represents the movement from bottom to up. The four variable along with their use is given below.
k - starting row index m - ending row index l - starting column index n - ending column index
Below is the implementation of the above approach:
C++
#include <bits/stdc++.h> using namespace std; #define R 3 #define C 6 void spiralPrint( int m, int n, int a[R][C]) { int i, k = 0, l = 0; /* k - starting row index m - ending row index l - starting column index n - ending column index i - iterator */ while (k < m && l < n) { /* Print the first row from the remaining rows */ for (i = l; i < n; ++i) { cout << a[k][i] << " " ; } k++; /* Print the last column from the remaining columns */ for (i = k; i < m; ++i) { cout << a[i][n - 1] << " " ; } n--; /* Print the last row from the remaining rows */ if (k < m) { for (i = n - 1; i >= l; --i) { cout << a[m - 1][i] << " " ; } m--; } /* Print the first column from the remaining columns */ if (l < n) { for (i = m - 1; i >= k; --i) { cout << a[i][l] << " " ; } l++; } } } /* Driver program to test above functions */ int main() { int a[R][C] = { { 1, 2, 3, 4, 5, 6 }, { 7, 8, 9, 10, 11, 12 }, { 13, 14, 15, 16, 17, 18 } }; spiralPrint(R, C, a); return 0; } // This is code is contributed by rathbhupendra |
C
/* This code is adopted from the solution given @ http:// effprog.blogspot.com/2011/01/spiral-printing-of-two-dimensional.html */ #include <stdio.h> #define R 3 #define C 6 void spiralPrint( int m, int n, int a[R][C]) { int i, k = 0, l = 0; /* k - starting row index m - ending row index l - starting column index n - ending column index i - iterator */ while (k < m && l < n) { /* Print the first row from the remaining rows */ for (i = l; i < n; ++i) { printf ( "%d " , a[k][i]); } k++; /* Print the last column from the remaining columns */ for (i = k; i < m; ++i) { printf ( "%d " , a[i][n - 1]); } n--; /* Print the last row from the remaining rows */ if (k < m) { for (i = n - 1; i >= l; --i) { printf ( "%d " , a[m - 1][i]); } m--; } /* Print the first column from the remaining columns */ if (l < n) { for (i = m - 1; i >= k; --i) { printf ( "%d " , a[i][l]); } l++; } } } /* Driver program to test above functions */ int main() { int a[R][C] = { { 1, 2, 3, 4, 5, 6 }, { 7, 8, 9, 10, 11, 12 }, { 13, 14, 15, 16, 17, 18 } }; spiralPrint(R, C, a); return 0; } |
Java
// Java program to print a given matrix in spiral form import java.io.*; class GFG { // Function print matrix in spiral form static void spiralPrint( int m, int n, int a[][]) { int i, k = 0 , l = 0 ; /* k - starting row index m - ending row index l - starting column index n - ending column index i - iterator */ while (k < m && l < n) { // Print the first row from the remaining rows for (i = l; i < n; ++i) { System.out.print(a[k][i] + " " ); } k++; // Print the last column from the remaining columns for (i = k; i < m; ++i) { System.out.print(a[i][n - 1 ] + " " ); } n--; // Print the last row from the remaining rows */ if (k < m) { for (i = n - 1 ; i >= l; --i) { System.out.print(a[m - 1 ][i] + " " ); } m--; } // Print the first column from the remaining columns */ if (l < n) { for (i = m - 1 ; i >= k; --i) { System.out.print(a[i][l] + " " ); } l++; } } } // driver program public static void main(String[] args) { int R = 3 ; int C = 6 ; int a[][] = { { 1 , 2 , 3 , 4 , 5 , 6 }, { 7 , 8 , 9 , 10 , 11 , 12 }, { 13 , 14 , 15 , 16 , 17 , 18 } }; spiralPrint(R, C, a); } } // Contributed by Pramod Kumar |
Python3
# Python3 program to print # given matrix in spiral form def spiralPrint(m, n, a) : k = 0 ; l = 0 ''' k - starting row index m - ending row index l - starting column index n - ending column index i - iterator ''' while (k < m and l < n) : # Print the first row from # the remaining rows for i in range (l, n) : print (a[k][i], end = " " ) k + = 1 # Print the last column from # the remaining columns for i in range (k, m) : print (a[i][n - 1 ], end = " " ) n - = 1 # Print the last row from # the remaining rows if ( k < m) : for i in range (n - 1 , (l - 1 ), - 1 ) : print (a[m - 1 ][i], end = " " ) m - = 1 # Print the first column from # the remaining columns if (l < n) : for i in range (m - 1 , k - 1 , - 1 ) : print (a[i][l], end = " " ) l + = 1 # Driver Code a = [ [ 1 , 2 , 3 , 4 , 5 , 6 ], [ 7 , 8 , 9 , 10 , 11 , 12 ], [ 13 , 14 , 15 , 16 , 17 , 18 ] ] R = 3 ; C = 6 spiralPrint(R, C, a) # This code is contributed by Nikita Tiwari. |
C#
// C# program to print a given // matrix in spiral form using System; class GFG { // Function print matrix in spiral form static void spiralPrint( int m, int n, int [, ] a) { int i, k = 0, l = 0; /* k - starting row index m - ending row index l - starting column index n - ending column index i - iterator */ while (k < m && l < n) { // Print the first row // from the remaining rows for (i = l; i < n; ++i) { Console.Write(a[k, i] + " " ); } k++; // Print the last column from the // remaining columns for (i = k; i < m; ++i) { Console.Write(a[i, n - 1] + " " ); } n--; // Print the last row from // the remaining rows if (k < m) { for (i = n - 1; i >= l; --i) { Console.Write(a[m - 1, i] + " " ); } m--; } // Print the first column from // the remaining columns if (l < n) { for (i = m - 1; i >= k; --i) { Console.Write(a[i, l] + " " ); } l++; } } } // Driver program public static void Main() { int R = 3; int C = 6; int [, ] a = { { 1, 2, 3, 4, 5, 6 }, { 7, 8, 9, 10, 11, 12 }, { 13, 14, 15, 16, 17, 18 } }; spiralPrint(R, C, a); } } // This code is contributed by Sam007 |
PHP
<?php // PHP program to print a given // matrix in spiral form $R = 3; $C = 6; function spiralPrint( $m , $n , & $a ) { $k = 0; $l = 0; /* $k - starting row index $m - ending row index $l - starting column index $n - ending column index $i - iterator */ while ( $k < $m && $l < $n ) { /* Print the first row from the remaining rows */ for ( $i = $l ; $i < $n ; ++ $i ) { echo $a [ $k ][ $i ] . " " ; } $k ++; /* Print the last column from the remaining columns */ for ( $i = $k ; $i < $m ; ++ $i ) { echo $a [ $i ][ $n - 1] . " " ; } $n --; /* Print the last row from the remaining rows */ if ( $k < $m ) { for ( $i = $n - 1; $i >= $l ; -- $i ) { echo $a [ $m - 1][ $i ] . " " ; } $m --; } /* Print the first column from the remaining columns */ if ( $l < $n ) { for ( $i = $m - 1; $i >= $k ; -- $i ) { echo $a [ $i ][ $l ] . " " ; } $l ++; } } } // Driver code $a = array ( array (1, 2, 3, 4, 5, 6), array (7, 8, 9, 10, 11, 12), array (13, 14, 15, 16, 17, 18)); spiralPrint( $R , $C , $a ); // This code is contributed // by ChitraNayal ?> |
1 2 3 4 5 6 12 18 17 16 15 14 13 7 8 9 10 11
Time Complexity: Time complexity of the above solution is O(mn).
Recursive Approach:
The above problem can be solved by printing the boundary of the Matrix recursively. In each recursive call, we decrease the dimensions of the matrix.
Below is the Recursive implementation for the same:
C++
#include <iostream> using namespace std; #define R 4 #define C 4 // Function for printing matrix in spiral // form i, j: Start index of matrix, row // and column respectively m, n: End index // of matrix row and column respectively void print( int arr[R][C], int i, int j, int m, int n) { // If i or j lies outside the matrix if (i >= m or j >= n) return ; // Print First Row for ( int p = i; p < n; p++) cout << arr[i][p] << " " ; // Print Last Column for ( int p = i + 1; p < m; p++) cout << arr[p][n - 1] << " " ; // Print Last Row, if Last and // First Row are not same if ((m - 1) != i) for ( int p = n - 2; p >= j; p--) cout << arr[m - 1][p] << " " ; // Print First Column, if Last and // First Column are not same if ((n - 1) != j) for ( int p = m - 2; p > i; p--) cout << arr[p][j] << " " ; print(arr, i + 1, j + 1, m - 1, n - 1); } // Driver Program int main() { int a[R][C] = { { 1, 2, 3, 4 }, { 5, 6, 7, 8 }, { 9, 10, 11, 12 }, { 13, 14, 15, 16 } }; print(a, 0, 0, R, C); return 0; } // This Code is contributed by Ankur Goel |
Java
// Java Program to test 1/e law // for Secretary Problem : import java.util.*; class GFG { static int R = 4 ; static int C = 4 ; // Function for printing matrix in spiral // form i, j: Start index of matrix, row // and column respectively m, n: End index // of matrix row and column respectively static void print( int arr[][], int i, int j, int m, int n) { // If i or j lies outside the matrix if (i >= m || j >= n) { return ; } // Print First Row for ( int p = i; p < n; p++) { System.out.print(arr[i][p] + " " ); } // Print Last Column for ( int p = i + 1 ; p < m; p++) { System.out.print(arr[p][n - 1 ] + " " ); } // Print Last Row, if Last and // First Row are not same if ((m - 1 ) != i) { for ( int p = n - 2 ; p >= j; p--) { System.out.print(arr[m - 1 ][p] + " " ); } } // Print First Column, if Last and // First Column are not same if ((n - 1 ) != j) { for ( int p = m - 2 ; p > i; p--) { System.out.print(arr[p][j] + " " ); } } print(arr, i + 1 , j + 1 , m - 1 , n - 1 ); } // Driver Code public static void main(String[] args) { int a[][] = {{ 1 , 2 , 3 , 4 }, { 5 , 6 , 7 , 8 }, { 9 , 10 , 11 , 12 }, { 13 , 14 , 15 , 16 }}; print(a, 0 , 0 , R, C); } } // This code is contributed by 29AjayKumar |
C#
// C# Program to test 1/e law // for Secretary Problem : using System; class GFG { static int R = 4; static int C = 4; // Function for printing matrix in spiral // form i, j: Start index of matrix, row // and column respectively m, n: End index // of matrix row and column respectively static void print( int [,]arr, int i, int j, int m, int n) { // If i or j lies outside the matrix if (i >= m || j >= n) { return ; } // Print First Row for ( int p = i; p < n; p++) { Console.Write(arr[i, p] + " " ); } // Print Last Column for ( int p = i + 1; p < m; p++) { Console.Write(arr[p, n - 1] + " " ); } // Print Last Row, if Last and // First Row are not same if ((m - 1) != i) { for ( int p = n - 2; p >= j; p--) { Console.Write(arr[m - 1, p] + " " ); } } // Print First Column, if Last and // First Column are not same if ((n - 1) != j) { for ( int p = m - 2; p > i; p--) { Console.Write(arr[p, j] + " " ); } } print(arr, i + 1, j + 1, m - 1, n - 1); } // Driver Code public static void Main(String[] args) { int [,]a = {{1, 2, 3, 4}, {5, 6, 7, 8}, {9, 10, 11, 12}, {13, 14, 15, 16}}; print(a, 0, 0, R, C); } } // This code is contributed by Princi Singh |
1 2 3 4 8 12 16 15 14 13 9 5 6 7 11 10
Please write comments if you find the above code incorrect, or find other ways to solve the same problem.
Recommended Posts:
- Print a given matrix in reverse spiral form
- Print K'th element in spiral form of matrix
- Print a matrix in a spiral form starting from a point
- Print a given matrix in spiral form using direction tracking method
- Print a given matrix in counter-clock wise spiral form
- Form a Spiral Matrix from the given Array
- Print n x n spiral matrix using O(1) extra space
- Print matrix in antispiral form
- Print a given matrix in zigzag form
- Program to Print Matrix in Z form
- Print a matrix in Reverse Wave Form
- Circular Matrix (Construct a matrix with numbers 1 to m*n in spiral way)
- Level order traversal in spiral form
- Convert given Matrix into sorted Spiral Matrix
- Sum of both diagonals of a spiral odd-order square matrix