Given an integer N and a pizza which can be cut into pieces, each cut should be a straight line going from the center of the pizza to its border. Also, the angle between any two cuts must be a positive integer. Two pieces are equal if their appropriate angles are equal. The given pizza can be cut in following three ways:
- Cut the pizza into N equal pieces.
- Cut the pizza into N pieces of any size.
- Cut the pizza into N pieces such that no two of them are equal.
The task is to find if it is possible to cut the pizza in the above ways for a given value of N. Print 1 if possible else 0 for all the cases i.e. print 111 if all the cases are possible.
Examples:
Input: N = 4
Output: 1 1 1
Explanation:
Case 1: All four pieces can have angle = 90
Case 2: Same cut as Case 1
Case 3: 1, 2, 3 and 354 are the respective angles of the four pieces cut.
Input: N = 7
Output: 0 1 1
Approach:
- Case 1 will only be possible if 360 is divisible by N.
- For case 2 to be possible, N must be ? 360.
- An ideal solution for case 3 would be to choose pieces in such a way that the angles they form are 1, 2, 3, … respectively. So, in order for this case to be possible, (N * (N + 1)) / 2 must be ? 360.
Below is the implementation of the above approach:
C++
#include <iostream>
using namespace std;
void cutPizza( int n)
{
cout << (360 % n == 0) ? "1" : "0" ;
cout << (n <= 360) ? "1" : "0" ;
cout << (((n * (n + 1)) / 2) <= 360) ? "1" : "0" ;
}
int main()
{
int n = 7;
cutPizza(n);
return 0;
}
|
Java
class GFG
{
static void cutPizza( int n)
{
System.out.print( ( 360 % n == 0 ) ? "1" : "0" );
System.out.print( (n <= 360 ) ? "1" : "0" );
System.out.print( (((n * (n + 1 )) / 2 ) <= 360 ) ? "1" : "0" );
}
public static void main(String args[])
{
int n = 7 ;
cutPizza(n);
}
}
|
Python3
def cutPizza(n):
if ( 360 % n = = 0 ):
print ( "1" , end = "")
else :
print ( "0" , end = "");
if (n < = 360 ):
print ( "1" , end = "")
else :
print ( "0" , end = "");
if (((n * (n + 1 )) / 2 ) < = 360 ):
print ( "1" , end = "")
else :
print ( "0" , end = "");
n = 7 ;
cutPizza(n);
|
C#
using System;
class GFG
{
static void cutPizza( int n)
{
Console.Write((360 % n == 0) ? "1" : "0" );
Console.Write((n <= 360) ? "1" : "0" );
Console.Write((((n * (n + 1)) / 2) <= 360) ? "1" : "0" );
}
public static void Main(String []args)
{
int n = 7;
cutPizza(n);
}
}
|
PHP
<?php
function cutPizza( $n )
{
echo (360 % $n == 0) ? "1" : "0" ;
echo ( $n <= 360) ? "1" : "0" ;
echo ((( $n * ( $n + 1)) / 2) <= 360) ? "1" : "0" ;
}
$n = 7;
cutPizza( $n );
?>
|
Javascript
<script>
function cutPizza(n)
{
document.write( (360 % n == 0) ? "1" : "0" );
document.write( (n <= 360) ? "1" : "0" );
document.write( (((n * (n + 1)) / 2) <= 360) ? "1" : "0" );
}
let n = 7;
cutPizza(n);
</script>
|
Time Complexity: O(1)
Auxiliary Space: O(1)