Number of pairs with Pandigital Concatenation
A pair of strings when concatenated is said to be a ‘Pandigital Concatenation’ if their concatenation consists of all digits from (0 – 9) in any order at least once.The task is, given N strings, compute the number of pairs resulting in a ‘Pandigital Concatenation’.
Examples:
Input : num[] = {"123567", "098234", "14765", "19804"} Output : 3 The pairs, 1st and 2nd giving (123567098234),1st and 4rd giving(12356719804) and 2nd and 3rd giving (09823414765), on concatenation result in Pandigital Concatenations. Input : num[] = {"56789", "098345", "1234"} Output : 0 None of the pairs on concatenation result in Pandigital Concatenations.
Method 1 (Brute Force): A possible brute-force solution is to form all possible concatenations by forming all pairs in O(n2 and using a frequency array for digits (0 – 9), we check if each digit exists at least once in each concatenation formed for every pair.
C++
// C++ program to find all // Pandigital concatenations // of two strings. #include <bits/stdc++.h> using namespace std; // Checks if a given // string is Pandigital bool isPanDigital(string s) { bool digits[10] = { false }; for ( int i = 0; i < s.length(); i++) digits[s[i] - '0' ] = true ; // digit i is not present // thus not pandigital for ( int i = 0; i <= 9; i++) if (digits[i] == false ) return false ; return true ; } // Returns number of pairs // of strings resulting in // Pandigital Concatenations int countPandigitalPairs(vector<string> &v) { // iterate over all // pair of strings int pairs = 0; for ( int i = 0; i < v.size(); i++) for ( int j = i + 1; j < v.size(); j++) if (isPanDigital(v[i] + v[j])) pairs++; return pairs; } // Driver code int main() { vector<string> v = { "123567" , "098234" , "14765" , "19804" }; cout << countPandigitalPairs(v) << endl; return 0; } |
Java
// Java program to find all // Pandigital concatenations // of two strings. import java.io.*; import java.util.*; class GFG { static ArrayList<String> v = new ArrayList<String>(); // Checks if a given // string is Pandigital static int isPanDigital(String s) { int digits[] = new int [ 10 ]; for ( int i = 0 ; i < s.length(); i++) digits[s.charAt(i) - ( int ) '0' ] = 1 ; // digit i is not present // thus not pandigital for ( int i = 0 ; i <= 9 ; i++) if (digits[i] == 0 ) return 0 ; return 1 ; } // Returns number of pairs // of strings resulting in // Pandigital Concatenations static int countPandigitalPairs() { // iterate over all // pair of strings int pairs = 0 ; for ( int i = 0 ; i < v.size(); i++) for ( int j = i + 1 ; j < v.size(); j++) if (isPanDigital(v.get(i) + v.get(j)) == 1 ) pairs++; return pairs; } // Driver code public static void main(String args[]) { v.add( "123567" ); v.add( "098234" ); v.add( "14765" ); v.add( "19804" ); System.out.print(countPandigitalPairs()); } } // This code is contributed // by Manish Shaw(manishshaw1) |
Python3
# Python3 program to find all # Pandigital concatenations # of two strings. # Checks if a given # is Pandigital def isPanDigital(s) : digits = [ False ] * 10 ; for i in range ( 0 , len (s)) : digits[ int (s[i]) - int ( '0' )] = True # digit i is not present # thus not pandigital for i in range ( 0 , 10 ) : if (digits[i] = = False ) : return False return True # Returns number of pairs # of strings resulting in # Pandigital Concatenations def countPandigitalPairs(v) : # iterate over all # pair of strings pairs = 0 for i in range ( 0 , len (v)) : for j in range (i + 1 , len (v)) : if (isPanDigital(v[i] + v[j])) : pairs = pairs + 1 return pairs # Driver code v = [ "123567" , "098234" , "14765" , "19804" ] print (countPandigitalPairs(v)) # This code is contributed by # Manish Shaw(manishshaw1) |
C#
// C# program to find all Pandigital // concatenations of two strings. using System; using System.Collections.Generic; class GFG { // Checks if a given // string is Pandigital static int isPanDigital( string s) { int []digits = new int [10]; Array.Clear(digits, 0, 10); for ( int i = 0; i < s.Length; i++) digits[s[i] - ( int ) '0' ] = 1; // digit i is not present // thus not pandigital for ( int i = 0; i <= 9; i++) if (digits[i] == 0) return 0; return 1; } // Returns number of pairs // of strings resulting in // Pandigital Concatenations static int countPandigitalPairs( ref List< string > v) { // iterate over all // pair of strings int pairs = 0; for ( int i = 0; i < v.Count; i++) for ( int j = i + 1; j < v.Count; j++) if (isPanDigital(v[i] + v[j]) == 1) pairs++; return pairs; } // Driver code static void Main() { List< string > v = new List< string >{ "123567" , "098234" , "14765" , "19804" }; Console.WriteLine(countPandigitalPairs( ref v)); } } // This code is contributed // by Manish Shaw(manishshaw1) |
PHP
<?php // PHP program to find all // Pandigital concatenations // of two strings. // Checks if a given // $is Pandigital function isPanDigital( $s ) { $digits = array (); $digits = array_fill (0, 10, false); for ( $i = 0; $i < strlen ( $s ); $i ++) $digits [ord( $s [ $i ]) - ord( '0' )] = true; // digit i is not present // thus not pandigital for ( $i = 0; $i <= 9; $i ++) if ( $digits [ $i ] == false) return false; return true; } // Returns number of pairs // of strings resulting in // Pandigital Concatenations function countPandigitalPairs(& $v ) { // iterate over all // pair of strings $pairs = 0; for ( $i = 0; $i < count ( $v ); $i ++) { for ( $j = $i + 1; $j < count ( $v ); $j ++) { if (isPanDigital( $v [ $i ]. $v [ $j ])) { $pairs ++; } } } return $pairs ; } // Driver code $v = array ( "123567" , "098234" , "14765" , "19804" ); echo (countPandigitalPairs( $v )); // This code is contributed by // Manish Shaw(manishshaw1) ?> |
Output:
3
Method 2 (Efficient):
Now we look for something better than the brute-force discussed above. Careful analysis suggests that, for every digit 0 – 9 to be present we have a mask as 1111111111 (i.e. all numbers 0-9 exist in the array of numbers
Digits - 0 1 2 3 4 5 6 7 8 9 | | | | | | | | | | Mask - 1 1 1 1 1 1 1 1 1 1 Here 1 denotes that the corresponding digits exists at-least once thus for all such Pandigital Concatenations, this relationship should hold. So we can represent 11...11 as a valid mask for pandigital concatenations.
So now the approach is to represent every string as a mask of 10 bits where the ith bit is set if the ith digit exists in the string.
E.g., "11405" can be represented as Digits - 0 1 2 3 4 5 6 7 8 9 | | | | | | | | | | Mask for 11405 - 1 1 0 0 1 1 0 0 0 0
The approach though may look complete is still not efficient as we still have to iterate over all pairs and check if the OR of these two strings result in the mask of a valid Pandigital Concatenation.
If we analyze the possible masks of all possible strings we can understand that every single string would be only comprised of digits 0 – 9, so every number can at max contain all digits 0 to 9 at least once thus the mask of such a number would be 1111111111 (1023 in decimal). Thus in decimal system all masks exits in (0 – 1023].
Now we just have to maintain a frequency array to store the number of times a mask exists in the array of strings.
Let two masks be i and j with frequencies freqi and freqj respectively,
If (i OR j) = Maskpandigital concatenation
Then,
Number of Pairs = freqi * freqj
C++
// CPP program to count PanDigital pairs #include <bits/stdc++.h> using namespace std; const int pandigitalMask = ((1 << 10) - 1); void computeMaskFrequencies(vector<string> v, map< int , int >& freq) { for ( int i = 0; i < v.size(); i++) { int mask = 0; // Stores digits present in string v[i] // atleast once. We use a set as we only // need digits which exist only once // (irrespective of reputation) unordered_set< int > digits; for ( int j = 0; j < v[i].size(); j++) digits.insert(v[i][j] - '0' ); // Calculate the mask by considering all digits // existing atleast once for ( auto it = digits.begin(); it != digits.end(); it++) { int digit = (*it); mask += (1 << digit); } // Increment the frequency of this mask freq[mask]++; } } // Returns number of pairs of strings resulting // in Pandigital Concatenations int pandigitalConcatenations(map< int , int > freq) { int ans = 0; // All possible strings lie between 1 and 1023 // so we iterate over every possible mask for ( int i = 1; i <= 1023; i++) { for ( int j = 1; j <= 1023; j++) { // if the concatenation results in mask of // Pandigital Concatenation, calculate all // pairs formed with Masks i and j if ((i | j) == pandigitalMask) { if (i == j) ans += (freq[i] * (freq[i] - 1)); else ans += (freq[i] * freq[j]); } } } // since every pair is considers twice, // we get rid of half of these return ans/2; } int countPandigitalPairs(vector<string> v) { // Find frequencies of all masks in // given vector of strings map< int , int > freq; computeMaskFrequencies(v, freq); // Return all possiblg concatenations. return pandigitalConcatenations(freq); } // Driver code int main() { vector<string> v = { "123567" , "098234" , "14765" , "19804" }; cout << countPandigitalPairs(v) << endl; return 0; } |
Output:
3
Complexity : O(N * |s| + 1023 * 1023) where |s| gives length of strings in the array
Recommended Posts:
- Pairs whose concatenation contain all digits
- Concatenation of two strings in PHP
- Number of pairs with Bitwise OR as Odd number
- Count number of pairs (i, j) such that arr[i] * arr[j] > arr[i] + arr[j]
- Number of pairs whose sum is a power of 2
- Lexicographical concatenation of all substrings of a string
- Print Concatenation of Zig-Zag String in 'n' Rows
- Check if concatenation of two strings is balanced or not
- Find number of pairs in an array such that their XOR is 0
- Count pairs with Bitwise XOR as EVEN number
- Count pairs (A, B) such that A has X and B has Y number of set bits and A+B = C
- Count pairs with Bitwise-AND as even number
- Number of index pairs such that s[i] and s[j] are anagrams
- Number of special pairs possible from the given two numbers
- Number of unique pairs in an array
If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.
Improved By : manishshaw1