Given an array arr[] consisting of N positive integers, the task is to find the sum of all the array elements required to be subtracted from each array element such that remaining array elements are all equal.
Examples:
Input: arr[] = {1, 2}
Output: 1
Explanation: Subtracting 1 from arr[1] modifies arr[] to {1, 1}. Therefore, the required sum is 1.
Input: arr[] = {1, 2, 3}
Output: 3
Explanation: Subtracting 1 and 2 from arr[1] and arr[2] modifies arr[] to {1, 1, 1}. Therefore, the required sum = 1 + 2 = 3.
Approach: The idea is to reduce all array elements to the minimum element present in the array. Follow the below steps to solve the problem:
Below is the implementation of the above approach:
C++
#include <bits/stdc++.h>
using namespace std;
int minValue( int arr[], int n)
{
int minimum = *min_element(
arr, arr + n);
int sum = 0;
for ( int i = 0; i < n; i++) {
sum = sum + (arr[i] - minimum);
}
return sum;
}
int main()
{
int arr[] = { 1, 2, 3 };
int N = sizeof (arr) / sizeof (arr[0]);
cout << minValue(arr, N);
return 0;
}
|
Java
import java.util.Arrays;
class GFG
{
static int minValue( int []arr, int n)
{
Arrays.sort(arr);
int minimum = arr[ 0 ];
int sum = 0 ;
for ( int i = 0 ; i < n; i++)
{
sum = sum + (arr[i] - minimum);
}
return sum;
}
static public void main(String args[])
{
int []arr = { 1 , 2 , 3 };
int N = arr.length;
System.out.println(minValue(arr, N));
}
}
|
Python3
def minValue(arr, n):
minimum = min (arr)
sum = 0
for i in range (n):
sum = sum + (arr[i] - minimum)
return sum
if __name__ = = '__main__' :
arr = [ 1 , 2 , 3 ]
N = len (arr)
print (minValue(arr, N))
|
C#
using System;
class GFG{
static int minValue( int []arr, int n)
{
Array.Sort(arr);
int minimum = arr[0];
int sum = 0;
for ( int i = 0; i < n; i++)
{
sum = sum + (arr[i] - minimum);
}
return sum;
}
static public void Main ()
{
int []arr = { 1, 2, 3 };
int N = arr.Length;
Console.WriteLine(minValue(arr, N));
}
}
|
Javascript
<script>
function minValue(arr, n)
{
var minimum = Math.min.apply(Math,arr);
var sum = 0;
var i;
for (i = 0; i < n; i++) {
sum = sum + (arr[i] - minimum);
}
return sum;
}
var arr = [1, 2, 3];
var N = arr.length;
document.write(minValue(arr, N));
</script>
|
Time Complexity: O(N)
Auxiliary Space: O(1)
Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!
Last Updated :
08 Jun, 2021
Like Article
Save Article