Given a binary array** arr[] **of size **N **and two players, **A** and **B**. The task is to minimize the score for player **A** by selecting the scores for the players as per the given constraints:

- Each player can remove one or two consecutive numbers in their turn from the array and elements are removed in the order from left to right.
- Players will have alternate turns, starting from player
**A**. - Initially, the penalty is
**0**and is increased by numbers, which player**A**remove.

**Examples:**

Input:arr[] = {1, 1, 1, 1, 0, 0, 1}Output:2Explanation:Elements can be removed as follows:

Turn 1: Player A remove the element at index 0. Therefore, penalty is 0 + 1 = 1.

Turn 2: Player B remove the elements at indices 1 and 2. Still, penalty is 1.

Turn 3: Player A remove the element at index 3. Therefore, penalty is 1 + 1 = 2.

Turn 4: Player B remove the element at index 4. Still, penalty is 2.

Turn 5: Player A remove the element at index 5. Still, penalty is 2 + 0 = 2.

Turn 6: Player B remove the element at index 6. Still, penalty is 2.

Hence, the minimum score for player A = 2.

Input:arr[] = {1, 0, 1, 1, 0, 1, 1, 1}Output:2Explanation:Elements can be removed as follows:

Turn 1: Player A remove the element at indices 0 and 1. Therefore, penalty is 0 + 1 + 0 = 1.

Turn 2: Player B remove the elements at indices 2 and 3. Still, penalty is 1.

Turn 3: Player A remove the element at index 4. Therefore, penalty is 1 + 0 = 1.

Turn 4: Player B remove the elements at indices 5 and 6. Still, penalty is 1.

Turn 5: Player A remove the element at index 7. Therefore, penalty is 2 + 1 = 2.

Hence, the minimum score for player A = 2.

**Naive Approach:** The simplest approach is to try all possible combinations to remove elements from the given array. Each time, there are two possible options i.e., one or two consecutive elements can be removed. At each position, from **1** to **N – 1**, there are **2 **choices. Hence, **2 ^{N}** possible combinations can be made. Penalties for each combination can be found and amongst them, print the minimum penalty.

**Time Complexity: **O(2^{N})**Auxiliary Space:** O(1)

**Efficient Approach: **To optimize the above approach, the idea is to use Dynamic Programming. It can be solved using the following **dp **transitions, where** dp[i][0]** stores the minimum penalty from **i** to **N – 1**. If player **A** start choosing from index **i**. Similarly, **dp[i][1]** can be defined for player **B**.

On player A’s turn:

dp[i][0] = min(dp(i+1, 1)+arr[i], dp(i+2, 1)+arr[i+1]+arr[i+2])

where,

i denotes the current position.

1 denotes that it is B’s turn on next state.On player B’s turn:

dp[i][1] = min(dp(i+1, 0), dp(i+2, 0))

where,

i denotes the current position.

0 denotes that it is A’s turn on next state.

Follow the steps below to solve the problem:

- Recursion with memorization can be used. For base condition, check if the current position exceeds or becomes
**N**, return**0** - Apply the transitions defined above according to the player’s turn and return the minimum answer.
- Initialize the recursive function with
**player A’s**turn and penalty as**0**. - For each recursive call, store the minimum of penalties calculated in a Map
**M**to avoid calculated for Overlapping Subproblems. - Print the
**minimum score**for the player**A**after the above recursive call ends

Below is the implementation of the above approach:

## C++

`// C++ program for the above approach` `#include <bits/stdc++.h>` `using` `namespace` `std;` `// Stores the minimum score for each` `// states as map<pair<pos, myturn>, ans>` `map<pair<` `int` `, ` `int` `>, ` `int` `> m;` `// Function to find the minimum score` `// after choosing element from array` `int` `findMinimum(` `int` `a[], ` `int` `n, ` `int` `pos,` ` ` `int` `myturn)` `{` ` ` `// Return the stored state` ` ` `if` `(m.find({ pos, myturn }) != m.end()) {` ` ` `return` `m[{ pos, myturn }];` ` ` `}` ` ` `// Base Case` ` ` `if` `(pos >= n) {` ` ` `return` `0;` ` ` `}` ` ` `// Player A's turn` ` ` `if` `(!myturn) {` ` ` `// Find the minimum score` ` ` `int` `ans = min(` ` ` `findMinimum(a, n, pos + 1, !myturn)` ` ` `+ a[pos],` ` ` `findMinimum(a, n, pos + 2, !myturn)` ` ` `+ a[pos] + a[pos + 1]);` ` ` `// Store the current state` ` ` `m[{ pos, myturn }] = ans;` ` ` `// Return the result` ` ` `return` `ans;` ` ` `}` ` ` `// Player B's turn` ` ` `if` `(myturn) {` ` ` `// Find minimum score` ` ` `int` `ans = min(` ` ` `findMinimum(a, n, pos + 1, !myturn),` ` ` `findMinimum(a, n, pos + 2, !myturn));` ` ` `// Store the current state` ` ` `m[{ pos, myturn }] = ans;` ` ` `// Return the result` ` ` `return` `ans;` ` ` `}` ` ` `return` `0;` `}` `// Function that finds the minimum` `// penality after choosing element` `// from the given binary array` `int` `countPenality(` `int` `arr[], ` `int` `N)` `{` ` ` `// Starting position of choosing` ` ` `// element from array` ` ` `int` `pos = 0;` ` ` `// 0 denotes player A turn` ` ` `// 1 denotes player B turn` ` ` `int` `turn = 0;` ` ` `// Function Call` ` ` `return` `findMinimum(arr, N, pos, turn);` `}` `// Print the answer for player A and B` `void` `printAnswer(` `int` `* arr, ` `int` `N)` `{` ` ` `// Minimum penalty` ` ` `int` `a = countPenality(arr, N);` ` ` `// Calculate sum of all arr elements` ` ` `int` `sum = 0;` ` ` `for` `(` `int` `i = 0; i < N; i++) {` ` ` `sum += arr[i];` ` ` `}` ` ` `// Print the minimum score` ` ` `cout << a;` `}` `// Driver Code` `int` `main()` `{` ` ` `// Given array arr[]` ` ` `int` `arr[] = { 1, 0, 1, 1, 0, 1, 1, 1 };` ` ` `int` `N = ` `sizeof` `(arr) / ` `sizeof` `(arr[0]);` ` ` `// Function Call` ` ` `printAnswer(arr, N);` ` ` `return` `0;` `}` |

## Java

`// Java program for the above approach` `import` `java.io.*;` `import` `java.util.*;` `class` `GFG{` ` ` `static` `class` `R` `{` ` ` `int` `x, y;` ` ` ` ` `public` `R(` `int` `x, ` `int` `y)` ` ` `{` ` ` `this` `.x = x;` ` ` `this` `.y = y;` ` ` `}` `}` `// Stores the minimum score for each` `// states as map<pair<pos, myturn>, ans>` `static` `HashMap<R, Integer> m = ` `new` `HashMap<>();` `// Function to find the minimum score` `// after choosing element from array` `public` `static` `int` `findMinimum(` `int` `[] arr, ` `int` `N,` ` ` `int` `pos, ` `int` `turn)` `{` ` ` ` ` `// Return the stored state` ` ` `R x = ` `new` `R(pos, turn);` ` ` ` ` `if` `(m.containsKey(x))` ` ` `{` ` ` `return` `m.get(x);` ` ` `}` ` ` `// Base Case` ` ` `if` `(pos >= N - ` `1` `)` ` ` `{` ` ` `return` `0` `;` ` ` `}` ` ` `// Player A's turn` ` ` `if` `(turn == ` `0` `)` ` ` `{` ` ` ` ` `// Find the minimum score` ` ` `int` `ans = Math.min(` ` ` `findMinimum(arr, N, pos + ` `1` `, ` `1` `) + arr[pos],` ` ` `findMinimum(arr, N, pos + ` `2` `, ` `1` `) + arr[pos] +` ` ` `arr[pos + ` `1` `]);` ` ` `// Store the current state` ` ` `R v = ` `new` `R(pos, turn);` ` ` `m.put(v, ans);` ` ` `// Return the result` ` ` `return` `ans;` ` ` `}` ` ` `// Player B's turn` ` ` `if` `(turn != ` `0` `)` ` ` `{` ` ` ` ` `// Find minimum score` ` ` `int` `ans = Math.min(` ` ` `findMinimum(arr, N, pos + ` `1` `, ` `0` `),` ` ` `findMinimum(arr, N, pos + ` `2` `, ` `0` `));` ` ` `// Store the current state` ` ` `R v = ` `new` `R(pos, turn);` ` ` `m.put(v, ans);` ` ` `// Return the result` ` ` `return` `ans;` ` ` `}` ` ` `return` `0` `;` `}` `// Function that finds the minimum` `// penality after choosing element` `// from the given binary array` `public` `static` `int` `countPenality(` `int` `[] arr, ` `int` `N)` `{` ` ` ` ` `// Starting position of choosing` ` ` `// element from array` ` ` `int` `pos = ` `0` `;` ` ` `// 0 denotes player A turn` ` ` `// 1 denotes player B turn` ` ` `int` `turn = ` `0` `;` ` ` `// Function Call` ` ` `return` `findMinimum(arr, N, pos, turn) + ` `1` `;` `}` `// Function to print the answer` `public` `static` `void` `printAnswer(` `int` `[] arr, ` `int` `N)` `{` ` ` ` ` `// Minimum penalty` ` ` `int` `a = countPenality(arr, N);` ` ` ` ` `// Calculate sum of all arr elements` ` ` `int` `sum = ` `0` `;` ` ` `for` `(` `int` `i = ` `0` `; i < N; i++)` ` ` `{` ` ` `sum += arr[i];` ` ` `}` ` ` ` ` `// Print the minimum score` ` ` `System.out.println(a);` `}` `// Driver code` `public` `static` `void` `main(String[] args)` `{` ` ` `int` `arr[] = { ` `1` `, ` `0` `, ` `1` `, ` `1` `, ` `0` `, ` `1` `, ` `1` `, ` `1` `};` ` ` `int` `N = ` `8` `;` ` ` `// Function Call` ` ` `printAnswer(arr, N);` `}` `}` `// This code is contributed by RohitOberoi` |

## Python3

`# Python3 program for the above approach` ` ` `# Stores the minimum score for each` `# states as map<pair<pos, myturn>, ans>` `m ` `=` `dict` `()` ` ` `# Function to find the minimum score` `# after choosing element from array` `def` `findMinimum(a, n, pos, myturn):` ` ` `# Return the stored state` ` ` `if` `(pos, myturn) ` `in` `m:` ` ` `return` `m[( pos, myturn )];` ` ` ` ` `# Base Case` ` ` `if` `(pos >` `=` `n ` `-` `1` `):` ` ` `return` `0` `;` ` ` ` ` `# Player A's turn` ` ` `if` `(` `not` `myturn):` ` ` ` ` `# Find the minimum score` ` ` `ans ` `=` `min` `( findMinimum(a, n, pos ` `+` `1` `, ` `not` `myturn) ` `+` `a[pos],` ` ` `findMinimum(a, n, pos ` `+` `2` `, ` `not` `myturn) ` `+` `a[pos] ` `+` `a[pos ` `+` `1` `]);` ` ` ` ` `# Store the current state` ` ` `m[( pos, myturn )] ` `=` `ans;` ` ` ` ` `# Return the result` ` ` `return` `ans;` ` ` ` ` `# Player B's turn` ` ` `if` `(myturn):` ` ` ` ` `# Find minimum score` ` ` `ans ` `=` `min` `( findMinimum(a, n, pos ` `+` `1` `, ` `not` `myturn),` ` ` `findMinimum(a, n, pos ` `+` `2` `, ` `not` `myturn));` ` ` ` ` `# Store the current state` ` ` `m[( pos, myturn )] ` `=` `ans;` ` ` ` ` `# Return the result` ` ` `return` `ans;` ` ` ` ` `return` `0` `;` ` ` `# Function that finds the minimum` `# penality after choosing element` `# from the given binary array` `def` `countPenality(arr, N):` ` ` `# Starting position of choosing` ` ` `# element from array` ` ` `pos ` `=` `0` `;` ` ` ` ` `# 0 denotes player A turn` ` ` `# 1 denotes player B turn` ` ` `turn ` `=` `False` `;` ` ` ` ` `# Function Call` ` ` `return` `findMinimum(arr, N, pos, turn) ` `+` `1` `;` `# Print the answer for player A and B` `def` `printAnswer(arr, N):` ` ` ` ` `# Minimum penalty` ` ` `a ` `=` `countPenality(arr, N);` ` ` ` ` `# Calculate sum of all arr elements` ` ` `sum` `=` `0` `;` ` ` ` ` `for` `i ` `in` `range` `(N):` ` ` ` ` `sum` `+` `=` `arr[i];` ` ` ` ` `# Print the minimum score` ` ` `print` `(a)` ` ` `# Driver Code` `if` `__name__` `=` `=` `'__main__'` `:` ` ` `# Given array arr[]` ` ` `arr ` `=` `[ ` `1` `, ` `0` `, ` `1` `, ` `1` `, ` `0` `, ` `1` `, ` `1` `, ` `1` `]` ` ` ` ` `N ` `=` `len` `(arr)` ` ` ` ` `# Function Call` ` ` `printAnswer(arr, N);` `# This code is contributed by rutvik_56` |

**Output:**

2

**Time Complexity:** O(N)**Auxiliary Space:** O(N)

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the **DSA Self Paced Course** at a student-friendly price and become industry ready. To complete your preparation from learning a language to DS Algo and many more, please refer **Complete Interview Preparation Course****.**

In case you wish to attend live classes with industry experts, please refer **Geeks Classes Live**