Two players, player1 and player2, are playing a game on a given number sequence S where player1 starts first and both of them play optimally. The task is to find whether player1 wins or loses. If he wins, print “Yes”, otherwise print “No”.
The rules of the game are as follows:
- The player’s alternate turns.
- In each turn, the current player must choose one or more elements of the current sequence S such that the values of all chosen elements are identical, and erase these elements from S.
- When a player cannot choose anything (the sequence S is already empty), this player loses the game.
Examples:
Input: S = {2, 1, 2, 2}
Output: Yes
Explanation:
The first player can choose the subset of elements with indices {0, 3} {0, 2} or {2, 3} (in the sequence) to ensure his victory in the future.
Input: S = {3, 2, 2, 3, 3, 5}
Output:No
Explanation:
The first player can not win in this sequence.
If player1 chooses 2 and removes all the 2 from the sequence, then player2 will choose two 3 and remove only two 3 as both players play optimally.
Then player1 removes either 3 or 5 and player2 will remove the final element. So player1 will always lose.
Approach: The approach to the above problem can be given as if the total number of elements in sequence is even and the number of elements that occur more than once is also even, then the first player can not win. If the number of elements that occur more than once is odd and the occurrence of repeated elements is greater than or equal to 4 and a multiple of 2, then the first player can not win. Otherwise, player1 can be the winner.
Below is the implementation of the above approach:
C++
#include <bits/stdc++.h>
using namespace std;
void game( int v[], int n)
{
unordered_map< int , int > m;
for ( int i = 0; i < n; i++) {
if (m.find(v[i]) == m.end())
m[v[i]] = 1;
else
m[v[i]]++;
}
int count = 0;
int check = 0;
for ( auto i : m) {
if (i.second > 1) {
if (i.second >= 4 && i.second % 2 == 0)
check++;
count++;
}
}
if (check % 2 != 0)
cout << "Yes" << endl;
else if (n % 2 == 0 && count % 2 == 0)
cout << "No" << endl;
else
cout << "Yes" << endl;
}
int main()
{
int arr[] = { 3, 2, 2, 3, 3, 5 };
int size = sizeof (arr) / sizeof (arr[0]);
game(arr, size);
return 0;
}
|
Java
import java.util.*;
class GFG {
public static void game( int [] v, int n)
{
HashMap<Integer, Integer> m = new HashMap<>();
for ( int i = 0 ; i < n; i++) {
if (!m.containsKey(v[i]))
m.put(v[i], 1 );
else
m.replace(v[i], m.get(v[i]) + 1 );
}
int count = 0 ;
int check = 0 ;
for (Map.Entry<Integer, Integer> i : m.entrySet()) {
if (i.getValue() > 1 ) {
if (i.getValue() >= 4
&& i.getValue() % 2 == 0 )
check++;
count++;
}
}
if (check % 2 != 0 )
flag = false ;
if (check % 2 != 0 )
System.out.println( "Yes" );
else if (n % 2 == 0 && count % 2 == 0 )
System.out.println( "No" );
else
System.out.println( "Yes" );
}
public static void main(String[] args)
{
int [] arr = { 3 , 2 , 2 , 3 , 3 , 5 };
int size = arr.length;
game(arr, size);
}
}
|
Python3
from collections import defaultdict
def game(v, n):
m = defaultdict( int )
for i in range (n):
if (v[i] not in m):
m[v[i]] = 1
else :
m[v[i]] + = 1
count = 0
check = 0
for i in m.values():
if (i > 1 ):
if (i > = 4 and i % 2 = = 0 ):
check + = 1
count + = 1
if (check % 2 ! = 0 ):
print ( "Yes" )
elif (n % 2 = = 0 and count % 2 = = 0 ):
print ( "No" )
else :
print ( "Yes" )
if __name__ = = "__main__" :
arr = [ 3 , 2 , 2 , 3 , 3 , 5 ]
size = len (arr)
game(arr, size)
|
C#
using System;
using System.Collections.Generic;
class GFG {
public static void game( int [] v, int n)
{
Dictionary< int , int > m = new Dictionary< int , int >();
for ( int i = 0; i < n; i++) {
if (!m.ContainsKey(v[i]))
m.Add(v[i], 1);
else
m[v[i]] = m[v[i]] + 1;
}
int count = 0;
int check = 0;
foreach (KeyValuePair< int , int > i in m)
{
if (i.Value > 1) {
if (i.Value >= 4 && i.Value % 2 == 0)
check++;
count++;
}
}
if (check % 2 != 0)
flag = false ;
if (check % 2 != 0)
Console.WriteLine( "Yes" );
else if (n % 2 == 0 && count % 2 == 0)
Console.WriteLine( "No" );
else
Console.WriteLine( "Yes" );
}
public static void Main(String[] args)
{
int [] arr = { 3, 2, 2, 3, 3, 5 };
int size = arr.Length;
game(arr, size);
}
}
|
Javascript
<script>
function game(v,n)
{
let m = new Map();
for (let i = 0; i < n; i++)
{
if (!m.has(v[i]))
m.set(v[i], 1);
else
m.set(v[i], m.get(v[i]) + 1);
}
let count = 0;
let check = 0;
for (let [key, value] of m.entries())
{
if (value> 1)
{
if (value >= 4 &&
value % 2 == 0)
check++;
count++;
}
}
let flag;
if (check % 2 != 0)
document.write( "Yes<br>" );
else if (n % 2 == 0 &&
count % 2 == 0)
document.write( "No<br>" );
else
document.write( "Yes<br>" );
}
let arr=[3, 2, 2, 3, 3, 5];
let size = arr.length;
game(arr, size);
</script>
|
Time complexity: The complexity of the above approach is O(N).
Auxiliary Space: O(N), for storing elements in the HashMap.