Skip to content
Related Articles

Related Articles

Minimum number of items to be delivered
  • Difficulty Level : Easy
  • Last Updated : 13 May, 2019

Given N buckets, each containing A[i] items. Given K tours within which all of the items are needed to be delivered. It is allowed to take items from only one bucket in 1 tour. The task is to tell the minimum number of items needed to be delivered per tour so that all of the items can be delivered within K tours.
Conditions : K >= N
Examples:

Input : 
N = 5
A[] = { 1, 3, 5, 7, 9 }
K = 10
Output : 3
By delivering 3 items at a time, 
Number of tours required for bucket 1 = 1
Number of tours required for bucket 2 = 1
Number of tours required for bucket 3 = 2
Number of tours required for bucket 4 = 3
Number of tours required for bucket 5 = 3
Total number of tours = 10

Input :
N = 10
A = 1, 4, 9, 16, 25, 36, 49, 64, 81, 100
k = 50
Output : 9

Approach: It is needed to find the minimum number of items per delivery. So, the idea is to iterate from 1 to the maximum value of items in a bucket and calculate the number of tours required for each bucket and find the total number of tours for complete delivery. The first such value with tours less than or equals K gives the required number.
Below is the implementation of the above idea:

C++




//C++ program to find the minimum numbers of tours required
#include <bits/stdc++.h>
  
using namespace std;
int getMin(int N,int A[],int k)
{
    //Iterating through each possible 
   // value of minimum Items
   int maximum=0,tours=0;
     
   for(int i=0;i<N;i++)
       maximum=max(maximum,A[i]);
         
   for(int i=1;i<maximum+1;i++)
   {
       tours=0;
       for(int j=0;j<N;j++)
       {
           if(A[j]%i==0)//perfecctly Divisible 
           {
               tours+=A[j]/i;
           }else{
                // Not Perfectly Divisible means required
                // tours are Floor Division + 1
                tours += floor(A[j]/i) + 1;
           }
       }
       if(tours<=k)
       {
             // Return First Feasible Value found,
            // since it is also the minimum
            return i;
       }
   }
     
   return -1;
}
//Driver code
int main() 
{
  int a[]={1, 4, 9, 16, 25, 36, 49, 64, 81, 100};
    
  int n=sizeof(a)/sizeof(a[0]);
    
  int k=50;
    
  if(getMin(n,a,k)==-1)
   cout<<"Not Possible";
   else
   cout<<getMin(n,a,k);
    
}
//This code is contributed by Mohit kumar 29


Java




// Java program to find the minimum numbers of tours required
import java.util.*;
class solution
{
  
static int getMin(int N,int A[],int k)
{
    //Iterating through each possible 
// value of minimum Items
int maximum=0,tours=0;
      
for(int i=0;i<N;i++)
    maximum=Math.max(maximum,A[i]);
          
for(int i=1;i<maximum+1;i++)
{
    tours=0;
    for(int j=0;j<N;j++)
    {
        if(A[j]%i==0)//perfecctly Divisible 
        {
            tours+=A[j]/i;
        }else{
                // Not Perfectly Divisible means required
                // tours are Floor Division + 1
                tours += Math.floor(A[j]/i) + 1;
        }
    }
    if(tours<=k)
    {
            // Return First Feasible Value found,
            // since it is also the minimum
            return i;
    }
}
      
return -1;
}
//Driver code
public static void main(String args[]) 
{
int a[]={1, 4, 9, 16, 25, 36, 49, 64, 81, 100};
  
int n=a.length;
  
int k=50;
  
if(getMin(n,a,k)==-1)
System.out.println("Not Possible");
else
System.out.println(getMin(n,a,k));
  
}
}
//This code is contributed by 
// Surendra_Gangwar


Python3




# Python3 program to find minimum numbers of 
# tours required
  
def getMin(N, A, k):
  
    # Iterating through each possible 
    # value of minimum Items
    for i in range(1, max(A)+1):
        tours = 0
        for j in range(0, len(A)):
            if(A[j]% i == 0):# Perfectly Divisible
                tours += A[j]/i
  
            else:
                # Not Perfectly Divisible means required
                # tours are Floor Division + 1
                tours += A[j]//i + 1 
  
        if(tours <= k):
            # Return First Feasible Value found,
            # since it is also the minimum
            return
    return "Not Possible"
  
# Driver Code
N = 10
A = [1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
k = 50
print(getMin(N, A, k))


C#




// C# program to find the minimum 
// numbers of tours required
using System;
  
class GFG
{
  
static int getMin(int N, int [] A, int k)
{
    // Iterating through each possible 
    // value of minimum Items
    int maximum = 0,tours = 0;
      
    for(int i = 0; i < N; i++)
        maximum = Math.Max(maximum, A[i]);
          
    for(int i = 1; i < maximum + 1; i++)
    {
        tours = 0;
        for(int j = 0; j < N; j++)
        {
            if(A[j] % i == 0)// perfecctly Divisible 
        {
            tours += A[j] /i;
        }
        else
        {
                // Not Perfectly Divisible means required
                // tours are Floor Division + 1
                tours += (int)Math.Floor(A[j] / (i * 1.0)) + 1;
        }
    }
        if(tours <= k)
        {
            // Return First Feasible Value found,
            // since it is also the minimum
            return i;
        }
    }
      
    return -1;
}
  
// Driver code
public static void Main() 
{
    int []a = {1, 4, 9, 16, 25, 36, 49, 64, 81, 100};
  
    int n = 10;
  
    int k = 50;
  
    if(getMin(n, a, k) == -1)
        Console.WriteLine("Not Possible");
    else
        Console.WriteLine(getMin(n, a, k));
}
}
  
// This code is contributed by 
// Mohit kumar


PHP




<?php
// PHP program to find the minimum number
// of tours required
  
function getMin($N, $A, $k)
{
      
    // Iterating through each possible 
    // value of minimum Items
    $maximum = 0;
    $tours = 0;
          
    for($i = 0; $i < $N; $i++)
        $maximum = max($maximum, $A[$i]);
              
    for($i = 1; $i < $maximum + 1; $i++)
    {
        $tours = 0;
        for($j = 0; $j < $N; $j++)
        {
            if($A[$j] % $i == 0) // perfectly Divisible 
            {
                $tours += $A[$j] / $i;
            }
            else
            {
                // Not Perfectly Divisible means required
                // tours are Floor Division + 1
                $tours += floor($A[$j] / $i) + 1;
            }
        }
          
        if($tours <= $k)
        {
            // Return First Feasible Value found,
            // since it is also the minimum
            return $i;
        }
    }
          
    return -1;
}
  
// Driver code
$a = array(1, 4, 9, 16, 25, 36,
               49, 64, 81, 100);
  
$n = sizeof($a);
  
$k = 50;
  
if(getMin($n, $a, $k) == -1)
    echo "Not Possible";
else
    echo getMin($n, $a, $k);
  
// This code is contributed by ihritik
?>


Output:

9

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.




My Personal Notes arrow_drop_up
Recommended Articles
Page :