# Probability of distributing M items among X bags such that first bag contains N items

Given three integers **N**, **M**, **X**. The task is to find the probability of distributing M items among X bags such that first bag contains N items**Examples:**

Input :M = 7, X =3, N = 3Output :0.2

The Number of ways to keep 7 items in 3 bags is .

The Number of ways to keep 4 items in 2 bags is . As the first bag contains 3 items.

The probability is /Input :M = 9, X = 3, N = 4Output :0.142857

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the

DSA Self Paced Courseat a student-friendly price and become industry ready. To complete your preparation from learning a language to DS Algo and many more, please referComplete Interview Preparation Course.In case you wish to attend

live classeswith experts, please referDSA Live Classes for Working ProfessionalsandCompetitive Programming Live for Students.

**Approach :**

In general, the Number of ways to place N items in K bags is .

- The Number of ways to keep M items in X bags is .
- The Number of ways to keep (M-N) items in (X-1) bags is . As the first bag contains N items.
- The probability is /.

Below is the implementation of the above approach:

## C++

`// CPP program to find probability of` `// first bag to contain N items such` `// that M items are distributed among X bags` `#include <bits/stdc++.h>` `using` `namespace` `std;` `// Function to find factorial of a number` `int` `factorial(` `int` `n)` `{` ` ` `if` `(n <= 1)` ` ` `return` `1;` ` ` `return` `n * factorial(n - 1);` `}` `// Function to find nCr` `int` `nCr(` `int` `n, ` `int` `r)` `{` ` ` `return` `factorial(n) / (factorial(r) * factorial(n - r));` `}` `// Function to find probability of` `// first bag to contain N items such` `// that M items are distributed among X bags` `float` `Probability(` `int` `M, ` `int` `N, ` `int` `X)` `{` ` ` `return` `(` `float` `)(nCr(M - N - 1, X - 2) /` ` ` `(nCr(M - 1, X - 1) * 1.0));` `}` `// Driver code` `int` `main()` `{` ` ` `int` `M = 9, X = 3, N = 4;` ` ` `// Function call` ` ` `cout << Probability(M, N, X);` ` ` `return` `0;` `}` |

## Java

`// Java program to find probability of` `// first bag to contain N items such` `// that M items are distributed among X bags` `class` `GFG` `{` ` ` `// Function to find factorial of a number` ` ` `public` `static` `int` `factorial(` `int` `n)` ` ` `{` ` ` `if` `(n <= ` `1` `)` ` ` `return` `1` `;` ` ` `return` `n * factorial(n - ` `1` `);` ` ` `}` ` ` `// Function to find nCr` ` ` `public` `static` `int` `nCr(` `int` `n, ` `int` `r)` ` ` `{` ` ` `return` `factorial(n) / (factorial(r) * factorial(n - r));` ` ` `}` ` ` `// Function to find probability of` ` ` `// first bag to contain N items such` ` ` `// that M items are distributed among X bags` ` ` `public` `static` `float` `Probability(` `int` `M, ` `int` `N, ` `int` `X)` ` ` `{` ` ` `return` `(` `float` `) (nCr(M - N - ` `1` `, X - ` `2` `) / (nCr(M - ` `1` `, X - ` `1` `) * ` `1.0` `));` ` ` `}` ` ` `// Driver code` ` ` `public` `static` `void` `main(String[] args)` ` ` `{` ` ` `int` `M = ` `9` `, X = ` `3` `, N = ` `4` `;` ` ` `// Function call` ` ` `System.out.println(Probability(M, N, X));` ` ` `}` `}` `// This code is contributed by` `// sanjeev2552` |

## Python3

`# Python3 program to find probability of` `# first bag to contain N items such` `# that M items are distributed among X bags` `# Function to find factorial of a number` `def` `factorial(n) :` ` ` `if` `(n <` `=` `1` `) :` ` ` `return` `1` `;` ` ` ` ` `return` `n ` `*` `factorial(n ` `-` `1` `);` `# Function to find nCr` `def` `nCr(n, r) :` ` ` `return` `(factorial(n) ` `/` `(factorial(r) ` `*` ` ` `factorial(n ` `-` `r)));` `# Function to find probability of` `# first bag to contain N items such` `# that M items are distributed among X bags` `def` `Probability(M, N, X) :` ` ` `return` `float` `(nCr(M ` `-` `N ` `-` `1` `, X ` `-` `2` `) ` `/` ` ` `(nCr(M ` `-` `1` `, X ` `-` `1` `) ` `*` `1.0` `));` `# Driver code` `if` `__name__ ` `=` `=` `"__main__"` `:` ` ` `M ` `=` `9` `; X ` `=` `3` `; N ` `=` `4` `;` ` ` `# Function call` ` ` `print` `(Probability(M, N, X));` `# This code is contributed by AnkitRai01` |

## C#

`// C# program to find probability of` `// first bag to contain N items such` `// that M items are distributed among X bags` `using` `System;` `class` `GFG` `{` ` ` ` ` `// Function to find factorial of a number` ` ` `static` `int` `factorial(` `int` `n)` ` ` `{` ` ` `if` `(n <= 1)` ` ` `return` `1;` ` ` ` ` `return` `n * factorial(n - 1);` ` ` `}` ` ` ` ` `// Function to find nCr` ` ` `static` `int` `nCr(` `int` `n, ` `int` `r)` ` ` `{` ` ` `return` `factorial(n) / (factorial(r) * factorial(n - r));` ` ` `}` ` ` ` ` `// Function to find probability of` ` ` `// first bag to contain N items such` ` ` `// that M items are distributed among X bags` ` ` `static` `float` `Probability(` `int` `M, ` `int` `N, ` `int` `X)` ` ` `{` ` ` `return` `(` `float` `) (nCr(M - N - 1, X - 2) / (nCr(M - 1, X - 1) * 1.0));` ` ` `}` ` ` ` ` `// Driver code` ` ` `static` `void` `Main()` ` ` `{` ` ` `int` `M = 9, X = 3, N = 4;` ` ` ` ` `// Function call` ` ` `Console.WriteLine(Probability(M, N, X));` ` ` `}` `}` ` ` `// This code is contributed by` `// mohitkumar 29` |

## Javascript

`<script>` `// Java Script program to find probability of` `// first bag to contain N items such` `// that M items are distributed among X bags` ` ` `// Function to find factorial of a number` ` ` `function` `factorial( n)` ` ` `{` ` ` `if` `(n <= 1)` ` ` `return` `1;` ` ` `return` `n * factorial(n - 1);` ` ` `}` ` ` `// Function to find nCr` ` ` `function` `nCr( n, r)` ` ` `{` ` ` `return` `factorial(n) / (factorial(r) * factorial(n - r));` ` ` `}` ` ` `// Function to find probability of` ` ` `// first bag to contain N items such` ` ` `// that M items are distributed among X bags` ` ` `function` `Probability(M,N,X)` ` ` `{` ` ` `return` `parseFloat(nCr(M - N - 1, X - 2) / (nCr(M - 1, X - 1) * 1.0));` ` ` `}` ` ` `// Driver code` ` ` `let M = 9, X = 3, N = 4;` ` ` `// Function call` ` ` `document.write(Probability(M, N, X).toFixed(6));` `// This code is contributed by Bobby` `</script>` |

**Output:**

0.142857