Given a strictly decreasing array arr[] consisting of N integers, the task is to find the minimum number of operations required to make at least two array elements equal, where each operation involves increasing every array element by its index value.
Examples:
Input: arr[] = {6, 5, 1}
Output: 1
Explanation:
{6 + 1, 5 + 2, 1 + 3} = {7, 7, 4}
Input: arr[] = {12, 8, 4}
Output: 4
Explanation:
Step 1 : {12 + 1, 8 + 2, 4 + 3} = {13, 10, 7}
Step 2 : {13 + 1, 10 + 2, 7 + 3} = {14, 12, 10}
Step 3 : {15, 14, 13}
Step 4 : {16, 16, 16}
Naive approach: Follow the below steps to solve the problem:
- Check if the array already has at least two equal elements or not. If found to be true, print 0.
- Otherwise, keep updating the array by increasing each array element by its index value and increase count. Check if array has two equal elements or not.
- Print count once the array is found to be containing at least two equal elements.
Below is the implementation of the above approach:
C++
#include <bits/stdc++.h>
using namespace std;
void update( int arr[], int N)
{
for ( int i = 0; i < N; i++) {
arr[i] += (i + 1);
}
}
bool check( int arr[], int N)
{
bool f = 0;
for ( int i = 0; i < N; i++) {
int count = 0;
for ( int j = 0; j < N; j++) {
if (arr[i] == arr[j]) {
count++;
}
}
if (count >= 2) {
f = 1;
break ;
}
}
if (f == 1)
return true ;
else
return false ;
}
void incrementCount( int arr[], int N)
{
int min = 0;
while (check(arr, N) != true ) {
update(arr, N);
min++;
}
cout << min;
}
int main()
{
int N = 3;
int arr[N] = { 12, 8, 4 };
incrementCount(arr, N);
return 0;
}
|
Java
import java.util.*;
class GFG{
static void update( int arr[], int N)
{
for ( int i = 0 ; i < N; i++)
{
arr[i] += (i + 1 );
}
}
static boolean check( int arr[], int N)
{
int f = 0 ;
for ( int i = 0 ; i < N; i++)
{
int count = 0 ;
for ( int j = 0 ; j < N; j++)
{
if (arr[i] == arr[j])
{
count++;
}
}
if (count >= 2 )
{
f = 1 ;
break ;
}
}
if (f == 1 )
return true ;
else
return false ;
}
static void incrementCount( int arr[], int N)
{
int min = 0 ;
while (check(arr, N) != true )
{
update(arr, N);
min++;
}
System.out.println(min);
}
public static void main (String[] args)
{
int N = 3 ;
int arr[] = { 12 , 8 , 4 };
incrementCount(arr, N);
}
}
|
Python3
def update(arr, N):
for i in range (N):
arr[i] + = (i + 1 );
def check(arr, N):
f = 0 ;
for i in range (N):
count = 0 ;
for j in range (N):
if (arr[i] = = arr[j]):
count + = 1 ;
if (count > = 2 ):
f = 1 ;
break ;
if (f = = 1 ):
return True ;
else :
return False ;
def incrementCount(arr, N):
min = 0 ;
while (check(arr, N) ! = True ):
update(arr, N);
min + = 1 ;
print ( min );
if __name__ = = '__main__' :
N = 3 ;
arr = [ 12 , 8 , 4 ];
incrementCount(arr, N);
|
C#
using System;
class GFG{
static void update( int []arr, int N)
{
for ( int i = 0; i < N; i++)
{
arr[i] += (i + 1);
}
}
static bool check( int []arr, int N)
{
int f = 0;
for ( int i = 0; i < N; i++)
{
int count = 0;
for ( int j = 0; j < N; j++)
{
if (arr[i] == arr[j])
{
count++;
}
}
if (count >= 2)
{
f = 1;
break ;
}
}
if (f == 1)
return true ;
else
return false ;
}
static void incrementCount( int []arr, int N)
{
int min = 0;
while (check(arr, N) != true )
{
update(arr, N);
min++;
}
Console.WriteLine(min);
}
public static void Main(String[] args)
{
int N = 3;
int []arr = { 12, 8, 4 };
incrementCount(arr, N);
}
}
|
Javascript
<script>
function update(arr,N)
{
for (let i = 0; i < N; i++)
{
arr[i] += (i + 1);
}
}
function check(arr,N)
{
let f = 0;
for (let i = 0; i < N; i++)
{
let count = 0;
for (let j = 0; j < N; j++)
{
if (arr[i] == arr[j])
{
count++;
}
}
if (count >= 2)
{
f = 1;
break ;
}
}
if (f == 1)
return true ;
else
return false ;
}
function incrementCount(arr,N)
{
let min = 0;
while (check(arr, N) != true )
{
update(arr, N);
min++;
}
document.write(min);
}
let N = 3;
let arr= [12, 8, 4 ];
incrementCount(arr, N);
</script>
|
Time Complexity: O(N2)
Auxiliary Space: O(1)
Efficient Approach: The above approach can be optimized by observing that by the given operation, the difference between any two adjacent elements reduces by 1 as the array is decreasing. Therefore, the minimum number of operations required is equal to the minimum difference between any two adjacent elements.
Below is the implementation of the above approach:
C++
#include <bits/stdc++.h>
using namespace std;
void incrementCount( int arr[], int N)
{
int mini = arr[0] - arr[1];
for ( int i = 2; i < N; i++) {
mini
= min(mini, arr[i - 1] - arr[i]);
}
cout << mini;
}
int main()
{
int N = 3;
int arr[N] = { 12, 8, 4 };
incrementCount(arr, N);
return 0;
}
|
Java
import java.util.*;
class GFG{
static void incrementCount( int arr[], int N)
{
int mini = arr[ 0 ] - arr[ 1 ];
for ( int i = 2 ; i < N; i++)
{
mini = Math.min(mini,
arr[i - 1 ] - arr[i]);
}
System.out.println(mini);
}
public static void main (String[] args)
{
int N = 3 ;
int arr[] = { 12 , 8 , 4 };
incrementCount(arr, N);
}
}
|
Python3
def incrementCount(arr, N):
mini = arr[ 0 ] - arr[ 1 ]
for i in range ( 2 , N):
mini = min (mini,
arr[i - 1 ] - arr[i])
print (mini)
N = 3
arr = [ 12 , 8 , 4 ]
incrementCount(arr, N)
|
C#
using System;
class GFG{
static void incrementCount( int []arr, int N)
{
int mini = arr[0] - arr[1];
for ( int i = 2; i < N; i++)
{
mini = Math.Min(mini,
arr[i - 1] - arr[i]);
}
Console.WriteLine(mini);
}
public static void Main(String[] args)
{
int N = 3;
int []arr = { 12, 8, 4 };
incrementCount(arr, N);
}
}
|
Javascript
<script>
function incrementCount(arr, N)
{
let mini = arr[0] - arr[1];
for (let i = 2; i < N; i++)
{
mini = Math.min(mini,
arr[i - 1] - arr[i]);
}
document.write(mini);
}
let N = 3;
let arr = [ 12, 8, 4 ];
incrementCount(arr, N);
</script>
|
Time Complexity: O(N)
Auxiliary Space: O(1)
Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!
Last Updated :
22 Jun, 2021
Like Article
Save Article