Given a string consisting only of 1’s and 0’s. In one flip we can change any continuous sequence of this string. Find this minimum number of flips so the string consist of same characters only.
Examples:
Input : 00011110001110
Output : 2
We need to convert 1's sequence
so string consist of all 0's.
Input : 010101100011
Output : 4
Method 1 (Change in value encountered)
We need to find the min flips in string so all characters are equal. All we have to find numbers of sequence which consisting of 0’s or 1’s only. Then number of flips required will be half of this number as we can change all 0’s or all 1’s.
C++
#include <bits/stdc++.h>
using namespace std;
int findFlips( char str[], int n)
{
char last = ' ' ; int res = 0;
for ( int i = 0; i < n; i++) {
if (last != str[i])
res++;
last = str[i];
}
return res / 2;
}
int main()
{
char str[] = "00011110001110" ;
int n = strlen (str);
cout << findFlips(str, n);
return 0;
}
|
Java
public class minFlips {
static int findFlips(String str, int n)
{
char last = ' ' ; int res = 0 ;
for ( int i = 0 ; i < n; i++) {
if (last != str.charAt(i))
res++;
last = str.charAt(i);
}
return res / 2 ;
}
public static void main(String[] args)
{
String str = "00011110001110" ;
int n = str.length();
System.out.println(findFlips(str, n));
}
}
|
Python 3
def findFlips( str , n):
last = ' '
res = 0
for i in range ( n) :
if (last ! = str [i]):
res + = 1
last = str [i]
return res / / 2
if __name__ = = "__main__" :
str = "00011110001110"
n = len ( str )
print (findFlips( str , n))
|
C#
using System;
public class GFG {
static int findFlips(String str, int n)
{
char last = ' ' ; int res = 0;
for ( int i = 0; i < n; i++) {
if (last != str[i])
res++;
last = str[i];
}
return res / 2;
}
public static void Main()
{
String str = "00011110001110" ;
int n = str.Length;
Console.Write(findFlips(str, n));
}
}
|
Javascript
<script>
function findFlips( str , n) {
var last = ' ' ;
var res = 0;
for (i = 0; i < n; i++) {
if (last != str.charAt(i))
res++;
last = str.charAt(i);
}
return parseInt(res / 2);
}
var str = "00011110001110" ;
var n = str.length;
document.write(findFlips(str, n));
</script>
|
PHP
<?php
function findFlips( $str , $n )
{
$last = ' ' ;
$res = 0;
for ( $i = 0; $i < $n ; $i ++)
{
if ( $last != $str [ $i ])
$res ++;
$last = $str [ $i ];
}
return intval ( $res / 2);
}
$str = "00011110001110" ;
$n = strlen ( $str );
echo findFlips( $str , $n );
?>
|
Time Complexity: O(n)
Auxiliary Space: O(1)
Method 2(Count continuous 0 and 1 )
We can count the number of continuous 0 and continuous 1.
Since we have to take minimum, we use min function to take value with less continuous number. And output it.
Procedure:- Take two variable to count continuous 0 and 1. If 0 is encountered increment countZero and skip 0’s in continuation. Do same with 1 and its continuation. In the end the variables with less value is sent as output
C++
#include <bits/stdc++.h>
#include <iostream>
using namespace std;
int main()
{
string str = "010101100011" ;
int n = str.size();
int countZero = 0;
int countOne = 0;
for ( int i = 0; i < n; i++) {
if (str[i] == '0' ) {
countZero++;
while ((i + 1) != n && str[i + 1] == '0' ) {
i++;
}
}
else {
countOne++;
while ((i + 1) != n && str[i + 1] == '1' ) {
i++;
}
}
}
int mini = min(countOne, countZero);
cout << mini << endl;
return 0;
}
|
Java
public class Main {
public static void main(String[] args) {
String str = "010101100011" ;
int n = str.length();
int countZero = 0 ;
int countOne = 0 ;
for ( int i = 0 ; i < n; i++) {
if (str.charAt(i) == '0' ) {
countZero++;
while ((i + 1 ) != n && str.charAt(i + 1 ) == '0' ) {
i++;
}
} else {
countOne++;
while ((i + 1 ) != n && str.charAt(i + 1 ) == '1' ) {
i++;
}
}
}
int mini = Math.min(countOne, countZero);
System.out.println(mini);
}
}
|
C#
using System;
class Program
{
static void Main()
{
string str = "010101100011" ;
int n = str.Length;
int countZero = 0;
int countOne = 0;
for ( int i = 0; i < n; i++)
{
if (str[i] == '0' )
{
countZero++;
while ((i + 1) != n && str[i + 1] == '0' )
{
i++;
}
}
else
{
countOne++;
while ((i + 1) != n && str[i + 1] == '1' )
{
i++;
}
}
}
int mini = Math.Min(countOne, countZero);
Console.WriteLine(mini);
}
}
|
Javascript
function countConsecutive(str) {
const n = str.length;
let countZero = 0;
let countOne = 0;
for (let i = 0; i < n; i++) {
if (str[i] === '0' ) {
countZero++;
while (i + 1 < n && str[i + 1] === '0' ) {
i++;
}
} else {
countOne++;
while (i + 1 < n && str[i +1] === '1' ) {
i++;
}
}
}
const mini = Math.min(countOne, countZero);
console.log(mini);
}
const str = "010101100011" ;
countConsecutive(str);
|
Time Complexity: O(n)
Auxiliary Space: O(1)
This article is contributed by nuclode. If you like GeeksforGeeks and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!