Maximum sum of nodes in Binary tree such that no two are adjacent


Given a binary tree with a value associated with each node, we need to choose a subset of these nodes such that sum of chosen nodes is maximum under a constraint that no two chosen node in subset should be directly connected that is, if we have taken a node in our sum then we can’t take its any children in consideration and vice versa.
Examples:



In above binary tree chosen nodes are encircled 
and are not directly connected and their sum is
maximum possible.



Method 1
We can solve this problem by considering the fact that both node and its children can’t be in sum at same time, so when we take a node into our sum we will call recursively for its grandchildren or when we don’t take this node we will call for all its children nodes and finally we will choose maximum from both of these results.
It can be seen easily that above approach can lead to solving same subproblem many times, for example in above diagram node 1 calls node 4 and 5 when its value is chosen and node 3 also calls them when its value is not chosen so these nodes are processed more than once. We can stop solving these nodes more than once by memoizing the result at all nodes.
In below code a map is used for memoizing the result which stores result of complete subtree rooted at a node in the map, so that if it is called again, the value is not calculated again instead stored value from map is returned directly.
Please see below code for better understanding.

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ program to find maximum sum from a subset of
// nodes of binary tree
#include <bits/stdc++.h>
using namespace std;
  
/* A binary tree node structure */
struct node
{
    int data;
    struct node *left, *right;
};
  
/* Utility function to create a new Binary Tree node */
struct node* newNode(int data)
{
    struct node *temp = new struct node;
    temp->data = data;
    temp->left = temp->right = NULL;
    return temp;
}
  
//  Declaration of methods
int sumOfGrandChildren(node* node);
int getMaxSum(node* node);
int getMaxSumUtil(node* node, map<struct node*, int>& mp);
  
// method returns maximum sum possible from subtrees rooted
// at grandChildrens of node 'node'
int sumOfGrandChildren(node* node, map<struct node*, int>& mp)
{
    int sum = 0;
  
    //  call for children of left child only if it is not NULL
    if (node->left)
        sum += getMaxSumUtil(node->left->left, mp) +
               getMaxSumUtil(node->left->right, mp);
  
    //  call for children of right child only if it is not NULL
    if (node->right)
        sum += getMaxSumUtil(node->right->left, mp) +
               getMaxSumUtil(node->right->right, mp);
  
    return sum;
}
  
//  Utility method to return maximum sum rooted at node 'node'
int getMaxSumUtil(node* node, map<struct node*, int>& mp)
{
    if (node == NULL)
        return 0;
  
    // If node is already processed then return calculated
    // value from map
    if (mp.find(node) != mp.end())
        return mp[node];
  
    //  take current node value and call for all grand children
    int incl = node->data + sumOfGrandChildren(node, mp);
  
    //  don't take current node value and call for all children
    int excl = getMaxSumUtil(node->left, mp) +
               getMaxSumUtil(node->right, mp);
  
    //  choose maximum from both above calls and store that in map
    mp[node] = max(incl, excl);
  
    return mp[node];
}
  
// Returns maximum sum from subset of nodes
// of binary tree under given constraints
int getMaxSum(node* node)
{
    if (node == NULL)
        return 0;
    map<struct node*, int> mp;
    return getMaxSumUtil(node, mp);
}
  
//  Driver code to test above methods
int main()
{
    node* root = newNode(1);
    root->left = newNode(2);
    root->right = newNode(3);
    root->right->left = newNode(4);
    root->right->right = newNode(5);
    root->left->left = newNode(1);
  
    cout << getMaxSum(root) << endl;
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program to find maximum sum from a subset of 
// nodes of binary tree 
import java.util.HashMap;
public class FindSumOfNotAdjacentNodes {
  
    // method returns maximum sum possible from subtrees rooted 
    // at grandChildrens of node 'node' 
    public static int sumOfGrandChildren(Node node, HashMap<Node,Integer> mp) 
    
        int sum = 0
        //  call for children of left child only if it is not NULL 
        if (node.left!=null
            sum += getMaxSumUtil(node.left.left, mp) + 
                   getMaxSumUtil(node.left.right, mp); 
    
        //  call for children of right child only if it is not NULL 
        if (node.right!=null
            sum += getMaxSumUtil(node.right.left, mp) + 
                   getMaxSumUtil(node.right.right, mp); 
        return sum; 
    }
  
    //  Utility method to return maximum sum rooted at node 'node' 
    public static int getMaxSumUtil(Node node, HashMap<Node,Integer> mp) 
    
        if (node == null
            return 0
    
        // If node is already processed then return calculated 
        // value from map 
        if(mp.containsKey(node))
            return mp.get(node);
    
        //  take current node value and call for all grand children 
        int incl = node.data + sumOfGrandChildren(node, mp); 
    
        //  don't take current node value and call for all children 
        int excl = getMaxSumUtil(node.left, mp) + 
                   getMaxSumUtil(node.right, mp); 
    
        //  choose maximum from both above calls and store that in map 
        mp.put(node,Math.max(incl, excl)); 
    
        return mp.get(node); 
    
  
    // Returns maximum sum from subset of nodes 
    // of binary tree under given constraints 
    public static int getMaxSum(Node node) 
    
        if (node == null
            return 0
        HashMap<Node,Integer> mp=new HashMap<>();
        return getMaxSumUtil(node, mp); 
    }
  
    public static void main(String args[]) 
    {
        Node root = new Node(1); 
        root.left = new Node(2); 
        root.right = new Node(3); 
        root.right.left = new Node(4); 
        root.right.right = new Node(5); 
        root.left.left = new Node(1);     
        System.out.print(getMaxSum(root));
    }
}
  
/* A binary tree node structure */
class Node 
    int data; 
    Node left, right; 
    Node(int data)
    {
        this.data=data;
        left=right=null;
    }
}; 
//This code is contributed by Gaurav Tiwari

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program to find maximum sum from a subset of 
// nodes of binary tree
using System;
using System.Collections.Generic; 
  
public class FindSumOfNotAdjacentNodes
{
  
    // method returns maximum sum
    // possible from subtrees rooted 
    // at grandChildrens of node 'node' 
    public static int sumOfGrandChildren(Node node, 
                            Dictionary<Node,int> mp) 
    
        int sum = 0; 
          
        // call for children of left 
        // child only if it is not NULL 
        if (node.left != null
            sum += getMaxSumUtil(node.left.left, mp) + 
                getMaxSumUtil(node.left.right, mp); 
      
        // call for children of right 
        // child only if it is not NULL 
        if (node.right != null
            sum += getMaxSumUtil(node.right.left, mp) + 
                getMaxSumUtil(node.right.right, mp); 
        return sum; 
    }
  
    // Utility method to return maximum
    // sum rooted at node 'node' 
    public static int getMaxSumUtil(Node node,
                        Dictionary<Node,int> mp) 
    
        if (node == null
            return 0; 
      
        // If node is already processed then 
        // return calculated value from map 
        if(mp.ContainsKey(node))
            return mp[node];
      
        // take current node value and 
        // call for all grand children 
        int incl = node.data + sumOfGrandChildren(node, mp); 
      
        // don't take current node value and 
        // call for all children 
        int excl = getMaxSumUtil(node.left, mp) + 
                getMaxSumUtil(node.right, mp); 
      
        // choose maximum from both above 
        // calls and store that in map 
        mp.Add(node,Math.Max(incl, excl)); 
      
        return mp[node]; 
    
  
    // Returns maximum sum from subset of nodes 
    // of binary tree under given constraints 
    public static int getMaxSum(Node node) 
    
        if (node == null
            return 0; 
        Dictionary<Node,int> mp=new Dictionary<Node,int>();
        return getMaxSumUtil(node, mp); 
    }
  
    // Driver code
    public static void Main(String []args) 
    {
        Node root = new Node(1); 
        root.left = new Node(2); 
        root.right = new Node(3); 
        root.right.left = new Node(4); 
        root.right.right = new Node(5); 
        root.left.left = new Node(1);    
        Console.Write(getMaxSum(root));
    }
}
  
/* A binary tree node structure */
public class Node 
    public int data; 
    public Node left, right; 
    public Node(int data)
    {
        this.data=data;
        left=right=null;
    }
}; 
  
// This code has been contributed by 29AjayKumar

chevron_right



Output:

11

 

Method 2 (Using pair)
Return a pair for each node in the binary tree such that first of the pair indicates maximum sum when the data of node is included and second indicates maximum sum when the data of a particular node is not included.

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ program to find maximum sum in Binary Tree
// such that no two nodes are adjacent.
#include<iostream>
using namespace std;
  
class Node
{
public:
    int data;
    Node* left, *right;
    Node(int data)
    {
        this->data = data;
        left = NULL;
        right = NULL;
    }
};
  
pair<int, int> maxSumHelper(Node *root)
{
    if (root==NULL)
    {
        pair<int, int> sum(0, 0);
        return sum;
    }
    pair<int, int> sum1 = maxSumHelper(root->left);
    pair<int, int> sum2 = maxSumHelper(root->right);
    pair<int, int> sum;
  
    // This node is included (Left and right children
    // are not included)
    sum.first = sum1.second + sum2.second + root->data;
  
    // This node is excluded (Either left or right
    // child is included)
    sum.second = max(sum1.first, sum1.second) +
                 max(sum2.first, sum2.second);
  
    return sum;
}
  
int maxSum(Node *root)
{
    pair<int, int> res = maxSumHelper(root);
    return max(res.first, res.second);
}
  
// Driver code
int main()
{
    Node *root= new Node(10);
    root->left= new Node(1);
    root->left->left= new Node(2);
    root->left->left->left= new Node(1);
    root->left->right= new Node(3);
    root->left->right->left= new Node(4);
    root->left->right->right= new Node(5);
    cout << maxSum(root);
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program to find maximum sum in Binary Tree 
// such that no two nodes are adjacent. 
public class FindSumOfNotAdjacentNodes {
  
    public static Pair maxSumHelper(Node root) 
    
        if (root==null
        
            Pair sum=new Pair(0, 0); 
            return sum; 
        
        Pair sum1 = maxSumHelper(root.left); 
        Pair sum2 = maxSumHelper(root.right); 
        Pair sum=new Pair(0,0); 
    
        // This node is included (Left and right children 
        // are not included) 
        sum.first = sum1.second + sum2.second + root.data; 
    
        // This node is excluded (Either left or right 
        // child is included) 
        sum.second = Math.max(sum1.first, sum1.second) + 
                     Math.max(sum2.first, sum2.second); 
    
        return sum; 
    
  
    // Returns maximum sum from subset of nodes 
    // of binary tree under given constraints 
    public static int maxSum(Node root)
    {
        Pair res=maxSumHelper(root); 
        return Math.max(res.first, res.second);
    }
  
    public static void main(String args[]) {
        Node root= new Node(10); 
        root.left= new Node(1); 
        root.left.left= new Node(2); 
        root.left.left.left= new Node(1); 
        root.left.right= new Node(3); 
        root.left.right.left= new Node(4); 
        root.left.right.right= new Node(5); 
        System.out.print(maxSum(root)); 
    }
}
  
/* A binary tree node structure */
class Node 
    int data; 
    Node left, right; 
    Node(int data)
    {
        this.data=data;
        left=right=null;
    }
}; 
  
/* Pair class */
class Pair
{
    int first,second;
    Pair(int first,int second)
    {
        this.first=first;
        this.second=second;
    }
}
//This code is contributed by Gaurav Tiwari

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 program to find maximum sum in Binary 
# Tree such that no two nodes are adjacent.
  
# Binary Tree Node 
  
""" utility that allocates a newNode 
with the given key """
class newNode: 
  
    # Construct to create a newNode 
    def __init__(self, key): 
        self.data = key
        self.left = None
        self.right = None
  
def maxSumHelper(root) :
  
    if (root == None): 
      
        sum = [0, 0
        return sum
      
    sum1 = maxSumHelper(root.left) 
    sum2 = maxSumHelper(root.right) 
    sum = [0, 0]
  
    # This node is included (Left and right 
    # children are not included) 
    sum[0] = sum1[1] + sum2[1] + root.data 
  
    # This node is excluded (Either left or 
    # right child is included) 
    sum[1] = (max(sum1[0], sum1[1]) + 
              max(sum2[0], sum2[1])) 
  
    return sum
  
def maxSum(root) :
  
    res = maxSumHelper(root) 
    return max(res[0], res[1]) 
  
# Driver Code 
if __name__ == '__main__':
    root = newNode(10
    root.left = newNode(1
    root.left.left = newNode(2
    root.left.left.left = newNode(1
    root.left.right = newNode(3
    root.left.right.left = newNode(4
    root.left.right.right = newNode(5)
    print(maxSum(root))
  
# This code is contributed by
# Shubham Singh(SHUBHAMSINGH10)

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program to find maximum sum in Binary Tree 
// such that no two nodes are adjacent. 
using System;
  
public class FindSumOfNotAdjacentNodes 
  
    public static Pair maxSumHelper(Node root) 
    
        Pair sum;
        if (root == null
        
            sum=new Pair(0, 0); 
            return sum; 
        
        Pair sum1 = maxSumHelper(root.left); 
        Pair sum2 = maxSumHelper(root.right); 
        Pair sum3 = new Pair(0,0); 
      
        // This node is included (Left and  
        // right children are not included) 
        sum3.first = sum1.second + sum2.second + root.data; 
      
        // This node is excluded (Either left  
        // or right child is included) 
        sum3.second = Math.Max(sum1.first, sum1.second) + 
                    Math.Max(sum2.first, sum2.second); 
      
        return sum3; 
    
  
    // Returns maximum sum from subset of nodes 
    // of binary tree under given constraints 
    public static int maxSum(Node root) 
    
        Pair res=maxSumHelper(root); 
        return Math.Max(res.first, res.second); 
    
  
    // Driver code
    public static void Main() 
    
        Node root = new Node(10); 
        root.left = new Node(1); 
        root.left.left = new Node(2); 
        root.left.left.left = new Node(1); 
        root.left.right = new Node(3); 
        root.left.right.left = new Node(4); 
        root.left.right.right = new Node(5); 
        Console.Write(maxSum(root)); 
    
  
/* A binary tree node structure */
public class Node 
    public int data; 
    public Node left, right; 
    public Node(int data) 
    
        this.data = data; 
        left = right = null
    
}; 
  
/* Pair class */
public class Pair 
    public int first,second; 
    public Pair(int first,int second) 
    
        this.first = first; 
        this.second = second; 
    
  
/* This code is contributed PrinciRaj1992 */

chevron_right



Output:

21

Time complexity: O(n)

Thanks to Surbhi Rastogi for suggesting this method.

 
This article is contributed by Utkarsh Trivedi. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.



My Personal Notes arrow_drop_up



Article Tags :
Practice Tags :


2


Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.