Maximize product of lengths of strings having no common characters
Given an array arr[] consisting of N strings, the task is to find the maximum product of the length of the strings arr[i] and arr[j] for all unique pairs (i, j), where the strings arr[i] and arr[j] contain no common characters.
Examples:
Input: arr[] = {“abcw”, “baz”, “foo”, “bar”, “xtfn”, “abcdef”}
Output: 16
Explanation: The strings “abcw” and “xtfn” have no common characters in it. Therefore, the product of the length of both the strings = 4 * 4 = 16, which is maximum among all possible pairs.Input: arr[] = {“a”, “aa”, “aaa”, “aaaa”}
Output: 0
Naive Approach: The idea is to generate all the pairs of strings and use a map to find the common character between them, if there are no common character between them, then use the product of their length to maximize the result.
Follow the steps below to implement the above idea:
- Generate all pairs of strings say, s1 and s2.
- Use a map to find the common character between the strings s1 and s2.
- Check if there is any common character between them:
- If there is no common character between them then use the product of their length and maximize the result.
- Finally, return the result.
Below is the implementation of the above approach:
C++
// C++ program to find the find the maximum product of the // length of the strings arr[i] and arr[j] for all unique // pairs (i, j), where the strings arr[i] and arr[j] contain // no common characters. #include <bits/stdc++.h> using namespace std; // Function to find the maximum product of the length of the // strings int maximizeProduct(vector<string>& arr) { int n = arr.size(); // This store the maximum product of string's length int result = 0; // Iterate to find the 1st string for ( int i = 0; i < n; i++) { string s1 = arr[i]; int len1 = arr[i].size(); // Map to store the unique character unordered_map< char , int > unmap; for ( auto c1 : s1) unmap[c1]++; // Iterate to find the 2nd string for ( int j = i + 1; j < n; j++) { string s2 = arr[j]; int len2 = arr[j].size(); bool flag = false ; for ( int k = 0; k < s2.size(); k++) { // Check if the characters of s2 are common // with s1 characters or not if (unmap.count(s2[k])) { flag = true ; break ; } } // This verify that there is no common character // between s1 and s2. if (flag == false ) { result = max(result, len1 * len2); } } } return result; } // Driver code int main() { vector<string> arr = { "abcw" , "baz" , "foo" , "bar" , "xtfn" , "abcdef" }; int result = maximizeProduct(arr); // Print the output cout << result; return 0; } |
Java
/*package whatever //do not write package name here */ import java.io.*; import java.util.*; class GFG { // Java program to find the find the maximum product of // the length of the strings arr[i] and arr[j] for all // unique pairs (i, j), where the strings arr[i] and // arr[j] contain no common characters. // Function to find the maximum product of the length of // the strings static int maximizeProduct(String[] arr) { int n = arr.length; // This store the maximum product of string's length int result = 0 ; // Iterate to find the 1st string for ( int i = 0 ; i < n; i++) { String s1 = arr[i]; int len1 = arr[i].length(); // Map to store the unique character HashMap<Character, Integer> unmap = new HashMap<>(); for ( char c : s1.toCharArray()) { if (unmap.containsKey(c)) { unmap.put(c, unmap.get(c) + 1 ); } else unmap.put(c, 1 ); } // Iterate to find the 2nd string for ( int j = i + 1 ; j < n; j++) { String s2 = arr[j]; int len2 = arr[j].length(); boolean flag = false ; for ( int k = 0 ; k < s2.length(); k++) { // Check if the characters of s2 are // common with s1 characters or not if (unmap.containsKey(s2.charAt(k))) { flag = true ; break ; } } // This verify that there is no common // character between s1 and s2. if (flag == false ) { result = Math.max(result, len1 * len2); } } } return result; } // Driver Code public static void main(String args[]) { String[] arr = { "abcw" , "baz" , "foo" , "bar" , "xtfn" , "abcdef" }; int result = maximizeProduct(arr); // Print the output System.out.println(result); } } |
Python3
# Python3 program to find the find the maximum product of the # length of the strings arr[i] and arr[j] for all unique # pairs (i, j), where the strings arr[i] and arr[j] contain # no common characters. # Function to find the maximum product of the length of the # strings def maximizeProduct(arr): n = len (arr) # This store the maximum product of string's length result = 0 # Iterate to find the 1st string for i in range (n): s1 = arr[i] len1 = len (arr[i]) # Map to store the unique character unmap = {} for c in s1: if (c in unmap): unmap + = 1 unmap = 1 # Iterate to find the 2nd string for j in range (i + 1 , n): s2 = arr[j] len2 = len (arr[j]) flag = False for k in range ( len (s2)): # Check if the characters of s2 are common # with s1 characters or not if (s2[k] in unmap): flag = True break # This verify that there is no common character # between s1 and s2. if (flag = = False ): result = max (result, len1 * len2) return result # Driver code arr = [ "abcw" , "baz" , "foo" , "bar" , "xtfn" , "abcdef" ] result = maximizeProduct(arr) # Print the output print (result) # This code is contributed by shinjanpatra |
C#
// C# program to find the find the maximum product of the // length of the strings arr[i] and arr[j] for all unique // pairs (i, j), where the strings arr[i] and arr[j] contain // no common characters. using System; using System.Collections.Generic; public class Test { // Function to find the maximum product of the length of // the strings static int maximizeProduct(List< string > arr) { int n = arr.Count; // This store the maximum product of string's length int result = 0; // Iterate to find the 1st string for ( int i = 0; i < n; i++) { string s1 = arr[i]; int len1 = arr[i].Length; // Map to store the unique character Dictionary< char , int > unmap = new Dictionary< char , int >(); foreach ( char c in s1) { if (unmap.ContainsKey(c)) unmap++; else unmap.Add(c, 1); } // Iterate to find the 2nd string for ( int j = i + 1; j < n; j++) { string s2 = arr[j]; int len2 = arr[j].Length; bool flag = false ; for ( int k = 0; k < s2.Length; k++) { // Check if the characters of s2 are // common with s1 characters or not if (unmap.ContainsKey(s2[k])) { flag = true ; break ; } } // This verify that there is no common // character between s1 and s2. if (flag == false ) { result = Math.Max(result, len1 * len2); } } } return result; } // Driver code public static void Main() { List< string > arr = new List< string >{ "abcw" , "baz" , "foo" , "bar" , "xtfn" , "abcdef" }; int result = maximizeProduct(arr); // Print the output Console.WriteLine(result); } } // This code is contributed by ishankhandelwals. |
Javascript
<script> // JavaScript program to find the find the maximum product of the // length of the strings arr[i] and arr[j] for all unique // pairs (i, j), where the strings arr[i] and arr[j] contain // no common characters. // Function to find the maximum product of the length of the // strings function maximizeProduct(arr) { let n = arr.length; // This store the maximum product of string's length let result = 0; // Iterate to find the 1st string for (let i = 0; i < n; i++) { let s1 = arr[i]; let len1 = arr[i].length; // Map to store the unique character let unmap = new Map(); for (let c of s1){ if (unmap.has(c)){ unmap.set(c,unmap.get(c)+1); } unmap.set(c,1); } // Iterate to find the 2nd string for (let j = i + 1; j < n; j++) { let s2 = arr[j]; let len2 = arr[j].length; let flag = false ; for (let k = 0; k < s2.length; k++) { // Check if the characters of s2 are common // with s1 characters or not if (unmap.has(s2[k])) { flag = true ; break ; } } // This verify that there is no common character // between s1 and s2. if (flag == false ) { result = Math.max(result, len1 * len2); } } } return result; } // Driver code let arr = [ "abcw" , "baz" , "foo" , "bar" , "xtfn" , "abcdef" ]; let result = maximizeProduct(arr); // Print the output document.write(result, "</br>" ); // This code is contributed by shinjanpatra </script> |
16
Time Complexity: O(N2 * M), where M is the maximum length of the string.
Auxiliary Space: O(M)
Please Login to comment...