Skip to content
Related Articles

Related Articles

Maximise distance by rearranging all duplicates at same distance in given Array

View Discussion
Improve Article
Save Article
Like Article
  • Difficulty Level : Hard
  • Last Updated : 25 Feb, 2022

Given an array arr[] of N integers. Arrange the array in a way such that the minimum distance among all pairs of same elements is maximum among all possible arrangements. The task is to find this maximum value.

Examples:

Input: arr[] = {1, 1, 2, 3}
Output: 3
Explanation: All possible arrangements are: 
{1, 1, 2, 3}, {1, 1, 3, 2}, {1, 2, 1, 3}, {1, 2, 3, 1}, {1, 3, 1, 2}, {1, 3, 2, 1},  
{2, 1, 1, 3}, {2, 1, 3, 1}, {2, 3, 1, 1}, {3, 1, 1, 2}, {3, 1, 2, 1}, {3, 2, 1, 1}.
Here the arrangements {1, 2, 3, 1} and {1, 3, 2, 1} gives the answer which is 3.
As distance = |(index of first 1) – (index of second 1)|

Input: arr[] = {1, 2, 1, 2, 9, 10, 9}
Output: 4
Explanation: One such arrangement is {2, 9, 1, 10, 2, 9, 1}

 

Approach: The approach to solve this problem is based on the observation that the elements with maximum frequency must have as much distance between them as possible. Follow the steps mentioned below to solve the problem: 

  • Find out the element(s) with maximum frequency.
  • Suppose m elements have maximum frequency max_freq then conquer m*max_freq positions from the N positions. Now the positions unoccupied are un_pos = N max_freq*m. 
  • Now, group the elements which do not have maximum frequency consecutively in the same order and have an equal interval.
  • The greatest interval can be given by interval = un_pos/(max_freq-1) because when all the occurrences of m elements are placed equidistant to each other it will break the arrangement in (max_freq – 1) segments.
  • And finally adding m for the highest frequency elements one each we get the answer to the given question as interval + m.

Below is the implementation of the above approach.

C++




// C++ code to implement the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to find
// the maximum possible minimum distance
int find_max_distance(vector<int> a, int n)
{
    int m = 0, max_freq = 0;
    int un_pos, interval, answer;
 
    // To count frequency of
    // each integer value of array
    map<int, int> count_freq;
 
    for (int i = 0; i < n; i++) {
        count_freq[a[i]]++;
        max_freq = max(max_freq,
                       count_freq[a[i]]);
    }
 
    // Loop to find the number of integers
    // in array with maximum frequency
    for (auto iterator : count_freq) {
        if (iterator.second == max_freq)
            m++;
    }
 
    un_pos = n - m * max_freq;
    interval = un_pos / (max_freq - 1);
 
    answer = interval + m;
 
    return answer;
}
 
// Driver Code
int main()
{
    int N = 7;
    vector<int> arr = { 1, 2, 1, 2, 9, 10, 9 };
 
    int result = find_max_distance(arr, N);
    cout << result;
    return 0;
}

Java




// JAVA code to implement the above approach
import java.util.*;
class GFG
{
   
  // Function to find
  // the maximum possible minimum distance
  public static int find_max_distance(int[] a, int n)
  {
    int m = 0, max_freq = 0;
    int un_pos, interval, answer;
 
    // To count frequency of
    // each integer value of array
    HashMap<Integer, Integer> count_freq
      = new HashMap<>();
 
    for (int i = 0; i < n; i++) {
      if (count_freq.containsKey(a[i])) {
        count_freq.put(a[i],
                       count_freq.get(a[i]) + 1);
      }
      else {
        count_freq.put(a[i], 1);
      }
      max_freq
        = Math.max(max_freq, count_freq.get(a[i]));
    }
 
    // Loop to find the number of integers
    // in array with maximum frequency
    for (Map.Entry<Integer, Integer> iterator :
         count_freq.entrySet()) {
      if (iterator.getValue() == max_freq)
        m++;
    }
 
    un_pos = n - m * max_freq;
    interval = un_pos / (max_freq - 1);
 
    answer = interval + m;
 
    return answer;
  }
 
  // Driver Code
  public static void main(String[] args)
  {
    int N = 7;
    int[] arr = new int[] { 1, 2, 1, 2, 9, 10, 9 };
 
    int result = find_max_distance(arr, N);
    System.out.print(result);
  }
}
 
// This code is contributed by Taranpreet

Python3




# Python code to implement the above approach
# Function to find
# the maximum possible minimum distance
def find_max_distance(a, n):
    m = 0
    max_freq = 0
    un_pos = 0
    interval = 0
    answer = 0
 
    # To count frequency of
    # each integer value of array
    count_freq = {}
 
    for i in range(n):
        if a[i] not in count_freq:
            count_freq[a[i]] = 1
        else:
            count_freq[a[i]] += 1
        max_freq = max(max_freq,count_freq[a[i]])
     
 
    # Loop to find the number of integers
    # in array with maximum frequency
    for i in count_freq:
        if (count_freq[i] == max_freq):
            m += 1
     
    un_pos = n - m * max_freq
    interval = un_pos // (max_freq - 1)
 
    answer = interval + m
 
    return answer
 
# Driver Code
N = 7
arr =  [1, 2, 1, 2, 9, 10, 9]
result = find_max_distance(arr, N)
print(result)
 
# This code is contributed by rohitsingh07052.

C#




// C# code to implement the above approach
using System;
using System.Collections.Generic;
class GFG {
 
  // Function to find
  // the maximum possible minimum distance
  public static int find_max_distance(int[] a, int n)
  {
    int m = 0, max_freq = 0;
    int un_pos = 0, interval = 0, answer = 0;
 
    // To count frequency of
    // each integer value of array
    Dictionary<int, int> count_freq
      = new Dictionary<int, int>();
 
    for (int i = 0; i < n; i++) {
      if (count_freq.ContainsKey(a[i])) {
        count_freq[a[i]] = count_freq[a[i]] + 1;
      }
      else {
        count_freq.Add(a[i], 1);
      }
      max_freq = Math.Max(max_freq, count_freq[a[i]]);
    }
 
    // Loop to find the number of integers
    // in array with maximum frequency
    foreach(
      KeyValuePair<int, int> iterator in count_freq)
    {
      if (iterator.Value == max_freq)
        m++;
    }
 
    un_pos = n - m * max_freq;
    interval = un_pos / (max_freq - 1);
 
    answer = interval + m;
 
    return answer;
  }
 
  // Driver Code
  public static void Main()
  {
    int N = 7;
    int[] arr = new int[] { 1, 2, 1, 2, 9, 10, 9 };
 
    int result = find_max_distance(arr, N);
    Console.Write(result);
  }
}
 
// This code is contributed by Samim Hossain Mondal.

Javascript




<script>
    // JavaScript code to implement the above approach
 
    // Function to find
    // the maximum possible minimum distance
    const find_max_distance = (a, n) => {
        let m = 0, max_freq = 0;
        let un_pos, interval, answer;
 
        // To count frequency of
        // each integer value of array
        let count_freq = {};
 
        for (let i = 0; i < n; i++) {
            if (a[i] in count_freq) count_freq[a[i]]++;
            else count_freq[a[i]] = 1;
            max_freq = Math.max(max_freq,
                count_freq[a[i]]);
        }
 
        // Loop to find the number of integers
        // in array with maximum frequency
        for (let iterator in count_freq) {
            if (count_freq[iterator] == max_freq)
                m++;
        }
 
        un_pos = n - m * max_freq;
        interval = parseInt(un_pos / (max_freq - 1));
        answer = interval + m;
        return answer;
    }
 
    // Driver Code
    let N = 7;
    let arr = [1, 2, 1, 2, 9, 10, 9];
 
    let result = find_max_distance(arr, N);
    document.write(result);
 
// This code is contributed by rakeshsahni
 
</script>

 
 

Output

4

 

Time Complexity: O(N)
Auxiliary Space: O(N)

 


My Personal Notes arrow_drop_up
Recommended Articles
Page :

Start Your Coding Journey Now!