Skip to content
Related Articles

Related Articles

Improve Article
Save Article
Like Article

Maximise K that can be reduced from Array to make all elements equal

  • Last Updated : 31 Jan, 2022

Given an array arr[] of size N, the task is to make all elements equal by applying the operation given below any number of times (possibly zero) to any of the elements in the given array. 

  • Select an element in the array.
  • Reduce it by a positive integer K.

Among all such positive k’s, print the maximum K.

Examples:

Input: arr[] = {3, 7, 5, 3, 3, 7}
Output: 2
Explanation: Choose K = 2, decrement both 7s twice and one 5 once. to get all the elements equal to 3 

Input: arr[] = {100, -2000, -2000, -2000}
Output: 2100

Input: arr[] = {2, 2, 2}
Output: -1
Explanation: As all the elements are already equal hence there can be infinite number of such K possible.

 

Approach: The task can be solved on the basis of some observations. All the array elements can be made equal to the minimum element of the array. The maximum K can be obtained by finding the greatest common divisor of the adjacent elements in sorted order.

Below is the implementation of the above approach:

C++




// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the maximum value of K
int maxValue(int arr[], int N)
{
    // Sorting array of integers
    sort(arr, arr + N);
 
    // Initializing a variable
    int ans = 0;
 
    // Iterating using a for loop
    for (int i = 1; i < N; i++) {
 
        // Find the gcd of ans and
        // (arr[i] - arr[i - 1])
        ans = __gcd(ans, arr[i] - arr[i - 1]);
    }
 
    // Return the answer
    return ans;
}
 
// Driver code
int main()
{
    // Initializing an array of integers
    int arr[] = { 3, 7, 5, 3, 3, 7 };
 
    // Number of elements in the array
    int N = sizeof(arr) / sizeof(int);
 
    int ans = maxValue(arr, N);
    if (ans > 0)
        cout << ans;
    else
        cout << "-1";
    return 0;
}

Java




// Java program for the above approach
import java.io.*;
import java.lang.*;
import java.util.*;
import java.math.BigInteger;
 
class GFG {
 
  //calculate gcd
  static int gcd(int a, int b)
  {
    return b == 0 ? a : gcd(b, a % b);  
  }
 
  // Function to find the maximum value of K
  static int maxValue(int arr[], int N)
  {
    // Sorting array of integers
    Arrays.sort(arr);
 
    // Initializing a variable
    int ans = 0;
 
    // Iterating using a for loop
    for (int i = 1; i < N; i++) {
 
      // Find the gcd of ans and
      // (arr[i] - arr[i - 1])
      ans = gcd(ans, arr[i] - arr[i - 1]);
    }
 
    // Return the answer
    return ans;
  }
 
  // Driver code
  public static void main (String[] args) {
    int arr[] = { 3, 7, 5, 3, 3, 7 };
 
    // Number of elements in the array
    int N = arr.length;
 
    int ans = maxValue(arr, N);
    if (ans > 0)
      System.out.println(ans);
    else
      System.out.println("-1");
  }
}
 
// This code is contributed by hrithikgarg03188.

Python3




# Python program for the above approach
 
# calculate gcd
def gcd(a, b):
    return a if b == 0 else gcd(b, a % b);
 
# Function to find the maximum value of K
def maxValue(arr, N):
    # Sorting array of integers
    arr.sort();
 
    # Initializing a variable
    ans = 0;
 
    # Iterating using a for loop
    for i in range(1,N):
       
        # Find the gcd of ans and
        # (arr[i] - arr[i - 1])
        ans = gcd(ans, arr[i] - arr[i - 1]);
 
    # Return the answer
    return ans;
 
# Driver code
if __name__ == '__main__':
    arr = [3, 7, 5, 3, 3, 7];
 
    # Number of elements in the array
    N = len(arr);
 
    ans = maxValue(arr, N);
    if (ans > 0):
        print(ans);
    else:
        print("-1");
 
# This code is contributed by shikhasingrajput

C#




// C# program for the above approach
using System;
class GFG {
 
  // JavaScript code for the above approach
  static int __gcd(int a, int b)
  {
    // Everything divides 0
    if (a == 0)
      return b;
    if (b == 0)
      return a;
 
    // base case
    if (a == b)
      return a;
 
    // a is greater
    if (a > b)
      return __gcd(a - b, b);
    return __gcd(a, b - a);
  }
 
  // Function to find the maximum value of K
  static int maxValue(int[] arr, int N)
  {
 
    // Sorting array of integers
    Array.Sort(arr);
 
    // Initializing a variable
    int ans = 0;
 
    // Iterating using a for loop
    for (int i = 1; i < N; i++) {
 
      // Find the gcd of ans and
      // (arr[i] - arr[i - 1])
      ans = __gcd(ans, arr[i] - arr[i - 1]);
    }
 
    // Return the answer
    return ans;
  }
  public static void Main()
  {
    // Initializing an array of integers
    int[] arr = { 3, 7, 5, 3, 3, 7 };
 
    // Number of elements in the array
    int N = arr.Length;
 
    int ans = maxValue(arr, N);
    if (ans > 0)
      Console.Write(ans);
    else
      Console.Write(-1);
  }
}
 
// This code is contributed by Samim Hossain Mondal.

Javascript




<script>
       // JavaScript code for the above approach
       function __gcd(a, b) {
           // Everything divides 0
           if (a == 0)
               return b;
           if (b == 0)
               return a;
 
           // base case
           if (a == b)
               return a;
 
           // a is greater
           if (a > b)
               return __gcd(a - b, b);
           return __gcd(a, b - a);
       }
 
       // Function to find the maximum value of K
       function maxValue(arr, N)
       {
        
           // Sorting array of integers
           arr.sort(function (a, b) { return a - b })
 
           // Initializing a variable
           let ans = 0;
 
           // Iterating using a for loop
           for (let i = 1; i < N; i++) {
 
               // Find the gcd of ans and
               // (arr[i] - arr[i - 1])
               ans = __gcd(ans, arr[i] - arr[i - 1]);
           }
 
           // Return the answer
           return ans;
       }
 
       // Driver code
       // Initializing an array of integers
       let arr = [3, 7, 5, 3, 3, 7];
 
       // Number of elements in the array
       let N = arr.length;
 
       let ans = maxValue(arr, N);
       if (ans > 0)
           document.write(ans);
       else
           document.write(-1)
 
        // This code is contributed by Potta Lokesh
   </script>

 
 

Output
2

 

Time Complexity: O(N * logN)
Auxiliary Space: O(1) 

 


My Personal Notes arrow_drop_up
Recommended Articles
Page :

Start Your Coding Journey Now!