We have seen various methods with different Time Complexities to calculate LCA in n-ary tree:-
Method 1 : Naive Method ( by calculating root to node path) | O(n) per query
Method 2 :Using Sqrt Decomposition | O(sqrt H)
Method 3 : Using Sparse Matrix DP approach | O(logn)
Lets study another method that has faster query time than all the above methods. So, our aim will be to calculate LCA in constant time ~ O(1). Let’s see how we can achieve it.
Method 4 : Using Range Minimum Query
We have discussed LCA and RMQ for binary tree. Here we discuss LCA problem to RMQ problem conversion for n-ary tree.
Pre-requisites:- LCA in Binary Tree using RMQ
RMQ using sparse table
Key Concept : In this method, we will be reducing our LCA problem to RMQ(Range Minimum Query) problem over a static array. Once, we do that then we will relate the Range minimum queries to the required LCA queries.
The first step will be to decompose the tree into a flat linear array. To do this we can apply the Euler walk. The Euler walk will give the pre-order traversal of the graph. So we will perform a Euler Walk on the tree and store the nodes in an array as we visit them. This process reduces the tree data-structure to a simple linear array.
Consider the below tree and the euler walk over it:-

Now lets think in general terms : Consider any two nodes on the tree. There will be exactly one path connecting both the nodes and the node that has the smallest depth value in the path will be the LCA of the two given nodes.
Now take any two distinct node say u and v in the Euler walk array. Now all the elements in the path from u to v will lie in between the index of nodes u and v in the Euler walk array. Therefore, we just need to calculate the node with the minimum depth between the index of node u and node v in the euler array.
For this we will maintain another array that will contain the depth of all the nodes corresponding to their position in the Euler walk array so that we can Apply our RMQ algorithm on it.
Given below is the euler walk array parallel to its depth track array.

Example :- Consider two nodes node 6 and node 7 in the euler array. To calculate the LCA of node 6 and node 7 we look the smallest depth value for all the nodes in between node 6 and node 7 .
Therefore, node 1 has the smallest depth value = 0 and hence, it is the LCA for node 6 and node 7.

Implementation:-
We will be maintaining three arrays 1)Euler Path
2)Depth array
3)First Appearance Index
Euler Path and Depth array are the same as described above
First Appearance Index FAI[] : The First Appearance index Array will store the index for the first position of every node in the Euler Path array. FAI[i] = First appearance of ith node in Euler Walk array.
The Implementation for the above method is given below:-
Implementation:
C++
#include "bits/stdc++.h"
using namespace std;
#define sz 101
vector < int > adj[sz];
vector < int > euler;
vector < int > depthArr;
int FAI[sz];
int level[sz];
int ptr;
int dp[sz][18];
int logn[sz];
int p2[20];
void buildSparseTable( int n)
{
memset (dp,-1, sizeof (dp));
for ( int i=1; i<n; i++)
dp[i-1][0] = (depthArr[i]>depthArr[i-1])?i-1:i;
for ( int l=1; l<15; l++)
for ( int i=0; i<n; i++)
if (dp[i][l-1]!=-1 and dp[i+p2[l-1]][l-1]!=-1)
dp[i][l] =
(depthArr[dp[i][l-1]]>depthArr[dp[i+p2[l-1]][l-1]])?
dp[i+p2[l-1]][l-1] : dp[i][l-1];
else
break ;
}
int query( int l, int r)
{
int d = r-l;
int dx = logn[d];
if (l==r) return l;
if (depthArr[dp[l][dx]] > depthArr[dp[r-p2[dx]][dx]])
return dp[r-p2[dx]][dx];
else
return dp[l][dx];
}
void preprocess()
{
p2[0] = 1;
for ( int i=1; i<18; i++)
p2[i] = p2[i-1]*2;
int val = 1,ptr=0;
for ( int i=1; i<sz; i++)
{
logn[i] = ptr-1;
if (val==i)
{
val*=2;
logn[i] = ptr;
ptr++;
}
}
}
void dfs( int cur, int prev, int dep)
{
if (FAI[cur]==-1)
FAI[cur] = ptr;
level[cur] = dep;
euler.push_back(cur);
ptr++;
for ( auto x:adj[cur])
{
if (x != prev)
{
dfs(x,cur,dep+1);
euler.push_back(cur);
ptr++;
}
}
}
void makeArr()
{
for ( auto x : euler)
depthArr.push_back(level[x]);
}
int LCA( int u, int v)
{
if (u==v)
return u;
if (FAI[u] > FAI[v])
swap(u,v);
return euler[query(FAI[u], FAI[v])];
}
void addEdge( int u, int v)
{
adj[u].push_back(v);
adj[v].push_back(u);
}
int main( int argc, char const *argv[])
{
int numberOfNodes = 8;
addEdge(1,2);
addEdge(1,3);
addEdge(2,4);
addEdge(2,5);
addEdge(2,6);
addEdge(3,7);
addEdge(3,8);
preprocess();
ptr = 0;
memset (FAI,-1, sizeof (FAI));
dfs(1,0,0);
makeArr();
buildSparseTable(depthArr.size());
cout << "LCA(6,7) : " << LCA(6,7) << "\n" ;
cout << "LCA(6,4) : " << LCA(6,4) << "\n" ;
return 0;
}
|
Java
import java.util.ArrayList;
import java.util.Arrays;
class GFG{
static int sz = 101 ;
@SuppressWarnings ( "unchecked" )
static ArrayList<Integer>[] adj = new ArrayList[sz];
static ArrayList<Integer> euler = new ArrayList<>();
static ArrayList<Integer> depthArr = new ArrayList<>();
static int [] FAI = new int [sz];
static int [] level = new int [sz];
static int ptr;
static int [][] dp = new int [sz][ 18 ];
static int [] logn = new int [sz];
static int [] p2 = new int [ 20 ];
static void buildSparseTable( int n)
{
for ( int i = 0 ; i < sz; i++)
{
for ( int j = 0 ; j < 18 ; j++)
{
dp[i][j] = - 1 ;
}
}
for ( int i = 1 ; i < n; i++)
dp[i - 1 ][ 0 ] = (depthArr.get(i) >
depthArr.get(i - 1 )) ?
i - 1 : i;
for ( int l = 1 ; l < 15 ; l++)
for ( int i = 0 ; i < n; i++)
if (dp[i][l - 1 ] != - 1 &&
dp[i + p2[l - 1 ]][l - 1 ] != - 1 )
dp[i][l] = (depthArr.get(dp[i][l - 1 ]) >
depthArr.get(
dp[i + p2[l - 1 ]][l - 1 ])) ?
dp[i + p2[l - 1 ]][l - 1 ] :
dp[i][l - 1 ];
else
break ;
}
static int query( int l, int r)
{
int d = r - l;
int dx = logn[d];
if (l == r)
return l;
if (depthArr.get(dp[l][dx]) >
depthArr.get(dp[r - p2[dx]][dx]))
return dp[r - p2[dx]][dx];
else
return dp[l][dx];
}
static void preprocess()
{
p2[ 0 ] = 1 ;
for ( int i = 1 ; i < 18 ; i++)
p2[i] = p2[i - 1 ] * 2 ;
int val = 1 , ptr = 0 ;
for ( int i = 1 ; i < sz; i++)
{
logn[i] = ptr - 1 ;
if (val == i)
{
val *= 2 ;
logn[i] = ptr;
ptr++;
}
}
}
static void dfs( int cur, int prev, int dep)
{
if (FAI[cur] == - 1 )
FAI[cur] = ptr;
level[cur] = dep;
euler.add(cur);
ptr++;
for (Integer x : adj[cur])
{
if (x != prev)
{
dfs(x, cur, dep + 1 );
euler.add(cur);
ptr++;
}
}
}
static void makeArr()
{
for (Integer x : euler)
depthArr.add(level[x]);
}
static int LCA( int u, int v)
{
if (u == v)
return u;
if (FAI[u] > FAI[v])
{
int temp = u;
u = v;
v = temp;
}
return euler.get(query(FAI[u], FAI[v]));
}
static void addEdge( int u, int v)
{
adj[u].add(v);
adj[v].add(u);
}
public static void main(String[] args)
{
for ( int i = 0 ; i < sz; i++)
{
adj[i] = new ArrayList<>();
}
int numberOfNodes = 8 ;
addEdge( 1 , 2 );
addEdge( 1 , 3 );
addEdge( 2 , 4 );
addEdge( 2 , 5 );
addEdge( 2 , 6 );
addEdge( 3 , 7 );
addEdge( 3 , 8 );
preprocess();
ptr = 0 ;
Arrays.fill(FAI, - 1 );
dfs( 1 , 0 , 0 );
makeArr();
buildSparseTable(depthArr.size());
System.out.println( "LCA(6,7) : " + LCA( 6 , 7 ));
System.out.println( "LCA(6,4) : " + LCA( 6 , 4 ));
}
}
|
Python3
from typing import List
adj = [[] for _ in range ( 101 )]
euler = []
depthArr = []
FAI = [ - 1 ] * 101
level = [ 0 ] * 101
ptr = 0
dp = [[ - 1 ] * 18 for _ in range ( 101 )]
logn = [ 0 ] * 101
p2 = [ 0 ] * 20
def buildSparseTable(n: int ):
for i in range (n):
dp[i][ 0 ] = i - 1 if depthArr[i] > depthArr[i - 1 ] else i
for l in range ( 1 , 15 ):
for i in range (n):
if dp[i][l - 1 ] ! = - 1 and dp[i + p2[l - 1 ]][l - 1 ] ! = - 1 :
dp[i][l] = dp[i + p2[l - 1 ]][l - 1 ] if depthArr[dp[i][l - 1 ]
] > depthArr[dp[i + p2[l - 1 ]][l - 1 ]] else dp[i][l - 1 ]
else :
break
def query(l: int , r: int ) - > int :
d = r - l
dx = logn[d]
if l = = r:
return l
if depthArr[dp[l][dx]] > depthArr[dp[r - p2[dx]][dx]]:
return dp[r - p2[dx]][dx]
else :
return dp[l][dx]
def preprocess():
global ptr
p2[ 0 ] = 1
for i in range ( 1 , 18 ):
p2[i] = p2[i - 1 ] * 2
val = 1
ptr = 0
for i in range ( 1 , 101 ):
logn[i] = ptr - 1
if val = = i:
val * = 2
logn[i] = ptr
ptr + = 1
def dfs(cur: int , prev: int , dep: int ):
global ptr
if FAI[cur] = = - 1 :
FAI[cur] = ptr
level[cur] = dep
euler.append(cur)
ptr + = 1
for x in adj[cur]:
if x ! = prev:
dfs(x, cur, dep + 1 )
euler.append(cur)
ptr + = 1
def makeArr():
global depthArr
for x in euler:
depthArr.append(level[x])
def LCA(u: int , v: int ) - > int :
if u = = v:
return u
if FAI[u] > FAI[v]:
u, v = v, u
return euler[query(FAI[u], FAI[v])]
def addEdge(u, v):
adj[u].append(v)
adj[v].append(u)
numberOfNodes = 8
addEdge( 1 , 2 )
addEdge( 1 , 3 )
addEdge( 2 , 4 )
addEdge( 2 , 5 )
addEdge( 2 , 6 )
addEdge( 3 , 7 )
addEdge( 3 , 8 )
preprocess()
ptr = 0
FAI = [ - 1 ] * (numberOfNodes + 1 )
dfs( 1 , 0 , 0 )
makeArr()
buildSparseTable( len (depthArr))
print ( "LCA(6,7) : " , LCA( 6 , 7 ))
print ( "LCA(6,4) : " , LCA( 6 , 4 ))
|
C#
using System;
using System.Collections.Generic;
public class GFG {
static int sz = 101;
static List< int >[] adj = new List< int >[sz];
static List< int > euler = new List< int >();
static List< int > depthArr = new List< int >();
static int [] FAI = new int [sz];
static int [] level = new int [sz];
static int ptr;
static int [,] dp = new int [sz, 18];
static int [] logn = new int [sz];
static int [] p2 = new int [20];
static void buildSparseTable( int n)
{
for ( int i = 0; i < sz; i++)
{
for ( int j = 0; j < 18; j++)
{
dp[i,j] = -1;
}
}
for ( int i = 1; i < n; i++)
dp[i - 1,0] = (depthArr[i] > depthArr[i - 1]) ? i - 1 : i;
for ( int l = 1; l < 15; l++)
for ( int i = 0; i < n; i++)
if (dp[i,l - 1] != -1 && dp[i + p2[l - 1],l - 1] != -1)
dp[i,l] = (depthArr[dp[i,l - 1]] > depthArr[dp[i + p2[l - 1],l - 1]]) ? dp[i + p2[l - 1],l - 1] : dp[i,l - 1];
else
break ;
}
static int query( int l, int r)
{
int d = r - l;
int dx = logn[d];
if (l == r)
return l;
if (depthArr[dp[l,dx]] > depthArr[dp[r - p2[dx],dx]])
return dp[r - p2[dx],dx];
else
return dp[l,dx];
}
static void preprocess()
{
p2[0] = 1;
for ( int i = 1; i < 18; i++)
p2[i] = p2[i - 1] * 2;
int val = 1, ptr = 0;
for ( int i = 1; i < sz; i++)
{
logn[i] = ptr - 1;
if (val == i)
{
val *= 2;
logn[i] = ptr;
ptr++;
}
}
}
static void dfs( int cur, int prev, int dep)
{
if (FAI[cur] == -1)
FAI[cur] = ptr;
level[cur] = dep;
euler.Add(cur);
ptr++;
foreach ( int x in adj[cur])
{
if (x != prev)
{
dfs(x, cur, dep + 1);
euler.Add(cur);
ptr++;
}
}
}
static void makeArr()
{
foreach ( int x in euler)
depthArr.Add(level[x]);
}
static int LCA( int u, int v)
{
if (u == v)
return u;
if (FAI[u] > FAI[v])
{
int temp = u;
u = v;
v = temp;
}
return euler[query(FAI[u], FAI[v])];
}
static void addEdge( int u, int v)
{
adj[u].Add(v);
adj[v].Add(u);
}
static void Main( string [] args)
{
int sz = 9;
adj = new List< int >[sz];
for ( int i = 0; i < sz; i++)
{
adj[i] = new List< int >();
}
int numberOfNodes = 8;
addEdge(1, 2);
addEdge(1, 3);
addEdge(2, 4);
addEdge(2, 5);
addEdge(2, 6);
addEdge(3, 7);
addEdge(3, 8);
preprocess();
ptr = 0;
Array.Fill(FAI, -1);
dfs(1, 0, 0);
makeArr();
buildSparseTable(depthArr.Count);
Console.WriteLine( "LCA(6,7) : " + LCA(6, 7));
Console.WriteLine( "LCA(6,4) : " + LCA(6, 4));
}
}
|
Javascript
let adj = [];
for (let _ = 0; _ < 101; _++) {
adj.push([]);
}
let euler = [];
let depthArr = [];
let FAI = new Array(101).fill(-1);
let level = new Array(101).fill(0);
let ptr = 0;
let dp = [];
for (let _ = 0; _ < 101; _++) {
dp.push( new Array(18).fill(-1));
}
let logn = new Array(101).fill(0);
let p2 = new Array(20).fill(0);
function buildSparseTable(n)
{
for (let i = 0; i < n; i++) {
dp[i][0] = i - 1 >= 0 && depthArr[i] > depthArr[i - 1] ? i - 1 : i;
}
for (let l = 1; l < 15; l++) {
for (let i = 0; i < n; i++) {
if (
dp[i][l - 1] !== -1 &&
dp[i + p2[l - 1]][l - 1] !== -1
) {
dp[i][l] =
depthArr[dp[i][l - 1]] >
depthArr[dp[i + p2[l - 1]][l - 1]]
? dp[i + p2[l - 1]][l - 1]
: dp[i][l - 1];
} else {
break ;
}
}
}
}
function query(l, r) {
let d = r - l;
let dx = logn[d];
if (l === r) {
return l;
}
if (depthArr[dp[l][dx]] > depthArr[dp[r - p2[dx]][dx]]) {
return dp[r - p2[dx]][dx];
} else {
return dp[l][dx];
}
}
function preprocess() {
p2[0] = 1;
for (let i = 1; i < 18; i++) {
p2[i] = p2[i - 1] * 2;
}
let val = 1;
ptr = 0;
for (let i = 1; i < 101; i++) {
logn[i] = ptr - 1;
if (val === i) {
val *= 2;
logn[i] = ptr;
ptr += 1;
}
}
}
function dfs(cur, prev, dep) {
if (FAI[cur] === -1) {
FAI[cur] = ptr;
}
level[cur] = dep;
euler.push(cur);
ptr += 1;
for (let x of adj[cur]) {
if (x !== prev) {
dfs(x, cur, dep + 1);
euler.push(cur);
ptr += 1;
}
}
}
function makeArr() {
for (let x of euler) {
depthArr.push(level[x]);
}
}
function LCA(u, v) {
if (u === v) {
return u;
}
if (FAI[u] > FAI[v]) {
[u, v] = [v, u];
}
return euler[query(FAI[u], FAI[v])];
}
function addEdge(u, v) {
adj[u].push(v);
adj[v].push(u);
}
let numberOfNodes = 8;
addEdge(1, 2);
addEdge(1, 3);
addEdge(2, 4);
addEdge(2, 5);
addEdge(2, 6);
addEdge(3, 7);
addEdge(3, 8);
preprocess();
ptr = 0;
FAI = new Array(numberOfNodes + 1).fill(-1);
dfs(1, 0, 0);
makeArr();
buildSparseTable(depthArr.length);
console.log( "LCA(6,7) : " , LCA(6, 7));
console.log( "LCA(6,4) : " , LCA(6, 4));
|
Output
LCA(6,7) : 1
LCA(6,4) : 2
Note : We are precalculating all the required power of 2’s and also precalculating the all the required log values to ensure constant time complexity per query. Else if we did log calculation for every query operation our Time complexity would have not been constant.
Time Complexity: The Conversion process from LCA to RMQ is done by Euler Walk that takes O(n) time.
Pre-processing for the sparse table in RMQ takes O(nlogn) time and answering each Query is a Constant time process. Therefore, overall Time Complexity is O(nlogn) – preprocessing and O(1) for each query.
Auxiliary Space: O(n+sz)
If you like GeeksforGeeks and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!
Last Updated :
27 Apr, 2023
Like Article
Save Article