# Number of children of given node in n-ary Tree

Given a node x, find the number of children of x(if it exists) in the given n-ary tree. Example :

```Input : x = 50
Output : 3
Explanation : 50 has 3 children having values 40, 100 and 20.
```

## Recommended : Please try your approach on {IDE} first, before moving on to the solution.

Approach :

• Initialize the number of children as 0.
• For every node in the n-ary tree, check if its value is equal to x or not. If yes, then return the number of children.
• If the value of x is not equal to the current node then, push all the children of current node in the queue.
• Keep Repeating the above step until the queue becomes empty.

Below is the implementation of the above idea :

## C++

 `// C++ program to find number ` `// of children of given node ` `#include ` `using` `namespace` `std; ` ` `  `// Represents a node of an n-ary tree ` `class` `Node { ` ` `  `public``: ` `    ``int` `key; ` `    ``vector child; ` ` `  `    ``Node(``int` `data) ` `    ``{ ` `        ``key = data; ` `    ``} ` `}; ` ` `  `// Function to calculate number ` `// of children of given node ` `int` `numberOfChildren(Node* root, ``int` `x) ` `{ ` `    ``// initialize the numChildren as 0 ` `    ``int` `numChildren = 0; ` ` `  `    ``if` `(root == NULL) ` `        ``return` `0; ` ` `  `    ``// Creating a queue and pushing the root ` `    ``queue q; ` `    ``q.push(root); ` ` `  `    ``while` `(!q.empty()) { ` `        ``int` `n = q.size(); ` ` `  `        ``// If this node has children ` `        ``while` `(n > 0) { ` ` `  `            ``// Dequeue an item from queue and ` `            ``// check if it is equal to x ` `            ``// If YES, then return number of children ` `            ``Node* p = q.front(); ` `            ``q.pop(); ` `            ``if` `(p->key == x) { ` `                ``numChildren = numChildren + p->child.size(); ` `                ``return` `numChildren; ` `            ``} ` ` `  `            ``// Enqueue all children of the dequeued item ` `            ``for` `(``int` `i = 0; i < p->child.size(); i++) ` `                ``q.push(p->child[i]); ` `            ``n--; ` `        ``} ` `    ``} ` `    ``return` `numChildren; ` `} ` ` `  `// Driver program ` `int` `main() ` `{ ` `    ``// Creating a generic tree ` `    ``Node* root = ``new` `Node(20); ` `    ``(root->child).push_back(``new` `Node(2)); ` `    ``(root->child).push_back(``new` `Node(34)); ` `    ``(root->child).push_back(``new` `Node(50)); ` `    ``(root->child).push_back(``new` `Node(60)); ` `    ``(root->child).push_back(``new` `Node(70)); ` `    ``(root->child->child).push_back(``new` `Node(15)); ` `    ``(root->child->child).push_back(``new` `Node(20)); ` `    ``(root->child->child).push_back(``new` `Node(30)); ` `    ``(root->child->child).push_back(``new` `Node(40)); ` `    ``(root->child->child).push_back(``new` `Node(100)); ` `    ``(root->child->child).push_back(``new` `Node(20)); ` `    ``(root->child->child->child).push_back(``new` `Node(25)); ` `    ``(root->child->child->child).push_back(``new` `Node(50)); ` ` `  `    ``// Node whose number of ` `    ``// children is to be calculated ` `    ``int` `x = 50; ` ` `  `    ``// Function calling ` `    ``cout << numberOfChildren(root, x) << endl; ` ` `  `    ``return` `0; ` `} `

## Java

 `// Java program to find number ` `// of children of given node ` `import` `java.util.*; ` ` `  `class` `GFG ` `{ ` ` `  `// Represents a node of an n-ary tree ` `static` `class` `Node ` `{ ` `    ``int` `key; ` `    ``Vector child = ``new` `Vector<>(); ` ` `  `    ``Node(``int` `data) ` `    ``{ ` `        ``key = data; ` `    ``} ` `}; ` ` `  `// Function to calculate number ` `// of children of given node ` `static` `int` `numberOfChildren(Node root, ``int` `x) ` `{ ` `    ``// initialize the numChildren as 0 ` `    ``int` `numChildren = ``0``; ` ` `  `    ``if` `(root == ``null``) ` `        ``return` `0``; ` ` `  `    ``// Creating a queue and pushing the root ` `    ``Queue q = ``new` `LinkedList(); ` `    ``q.add(root); ` ` `  `    ``while` `(!q.isEmpty()) ` `    ``{ ` `        ``int` `n = q.size(); ` ` `  `        ``// If this node has children ` `        ``while` `(n > ``0``)  ` `        ``{ ` ` `  `            ``// Dequeue an item from queue and ` `            ``// check if it is equal to x ` `            ``// If YES, then return number of children ` `            ``Node p = q.peek(); ` `            ``q.remove(); ` `            ``if` `(p.key == x)  ` `            ``{ ` `                ``numChildren = numChildren + ` `                              ``p.child.size(); ` `                ``return` `numChildren; ` `            ``} ` ` `  `            ``// Enqueue all children of the dequeued item ` `            ``for` `(``int` `i = ``0``; i < p.child.size(); i++) ` `                ``q.add(p.child.get(i)); ` `            ``n--; ` `        ``} ` `    ``} ` `    ``return` `numChildren; ` `} ` ` `  `// Driver Code ` `public` `static` `void` `main(String[] args)  ` `{ ` `     `  `    ``// Creating a generic tree ` `    ``Node root = ``new` `Node(``20``); ` `    ``(root.child).add(``new` `Node(``2``)); ` `    ``(root.child).add(``new` `Node(``34``)); ` `    ``(root.child).add(``new` `Node(``50``)); ` `    ``(root.child).add(``new` `Node(``60``)); ` `    ``(root.child).add(``new` `Node(``70``)); ` `    ``(root.child.get(``0``).child).add(``new` `Node(``15``)); ` `    ``(root.child.get(``0``).child).add(``new` `Node(``20``)); ` `    ``(root.child.get(``1``).child).add(``new` `Node(``30``)); ` `    ``(root.child.get(``2``).child).add(``new` `Node(``40``)); ` `    ``(root.child.get(``2``).child).add(``new` `Node(``100``)); ` `    ``(root.child.get(``2``).child).add(``new` `Node(``20``)); ` `    ``(root.child.get(``0``).child.get(``1``).child).add(``new` `Node(``25``)); ` `    ``(root.child.get(``0``).child.get(``1``).child).add(``new` `Node(``50``)); ` ` `  `    ``// Node whose number of ` `    ``// children is to be calculated ` `    ``int` `x = ``50``; ` ` `  `    ``// Function calling ` `    ``System.out.println(numberOfChildren(root, x)); ` `} ` `} ` ` `  `// This code is contributed by 29AjayKumar `

## Python3

 `# Python3 program to find number ` `# of children of given node ` ` `  `# Node of a linked list  ` `class` `Node:  ` `    ``def` `__init__(``self``, data ``=` `None``):  ` `        ``self``.key ``=` `data  ` `        ``self``.child ``=` `[] ` ` `  `# Function to calculate number ` `# of children of given node ` `def` `numberOfChildren( root, x): ` ` `  `    ``# initialize the numChildren as 0 ` `    ``numChildren ``=` `0` ` `  `    ``if` `(root ``=``=` `None``): ` `        ``return` `0` ` `  `    ``# Creating a queue and appending the root ` `    ``q ``=` `[] ` `    ``q.append(root) ` ` `  `    ``while` `(``len``(q) > ``0``) : ` `        ``n ``=` `len``(q) ` ` `  `        ``# If this node has children ` `        ``while` `(n > ``0``):  ` ` `  `            ``# Dequeue an item from queue and ` `            ``# check if it is equal to x ` `            ``# If YES, then return number of children ` `            ``p ``=` `q[``0``] ` `            ``q.pop(``0``) ` `            ``if` `(p.key ``=``=` `x) : ` `                ``numChildren ``=` `numChildren ``+` `len``(p.child) ` `                ``return` `numChildren ` `             `  `            ``i ``=` `0` `             `  `            ``# Enqueue all children of the dequeued item ` `            ``while` `( i < ``len``(p.child)): ` `                ``q.append(p.child[i]) ` `                ``i ``=` `i ``+` `1` `            ``n ``=` `n ``-` `1` ` `  `    ``return` `numChildren ` ` `  `# Driver program ` ` `  `# Creating a generic tree ` `root ``=` `Node(``20``) ` `(root.child).append(Node(``2``)) ` `(root.child).append(Node(``34``)) ` `(root.child).append(Node(``50``)) ` `(root.child).append(Node(``60``)) ` `(root.child).append(Node(``70``)) ` `(root.child[``0``].child).append(Node(``15``)) ` `(root.child[``0``].child).append(Node(``20``)) ` `(root.child[``1``].child).append(Node(``30``)) ` `(root.child[``2``].child).append(Node(``40``)) ` `(root.child[``2``].child).append(Node(``100``)) ` `(root.child[``2``].child).append(Node(``20``)) ` `(root.child[``0``].child[``1``].child).append(Node(``25``)) ` `(root.child[``0``].child[``1``].child).append(Node(``50``)) ` ` `  `# Node whose number of ` `# children is to be calculated ` `x ``=` `50` ` `  `# Function calling ` `print``( numberOfChildren(root, x) ) ` ` `  `# This code is contributed by Arnab Kundu `

## C#

 `// C# program to find number ` `// of children of given node ` `using` `System; ` `using` `System.Collections.Generic; ` `     `  `class` `GFG ` `{ ` ` `  `// Represents a node of an n-ary tree ` `public` `class` `Node ` `{ ` `    ``public` `int` `key; ` `    ``public` `List child = ``new` `List(); ` ` `  `    ``public` `Node(``int` `data) ` `    ``{ ` `        ``key = data; ` `    ``} ` `}; ` ` `  `// Function to calculate number ` `// of children of given node ` `static` `int` `numberOfChildren(Node root, ``int` `x) ` `{ ` `    ``// initialize the numChildren as 0 ` `    ``int` `numChildren = 0; ` ` `  `    ``if` `(root == ``null``) ` `        ``return` `0; ` ` `  `    ``// Creating a queue and pushing the root ` `    ``Queue q = ``new` `Queue(); ` `    ``q.Enqueue(root); ` ` `  `    ``while` `(q.Count != 0) ` `    ``{ ` `        ``int` `n = q.Count; ` ` `  `        ``// If this node has children ` `        ``while` `(n > 0)  ` `        ``{ ` ` `  `            ``// Dequeue an item from queue and ` `            ``// check if it is equal to x ` `            ``// If YES, then return number of children ` `            ``Node p = q.Peek(); ` `            ``q.Dequeue(); ` `            ``if` `(p.key == x)  ` `            ``{ ` `                ``numChildren = numChildren + ` `                              ``p.child.Count; ` `                ``return` `numChildren; ` `            ``} ` ` `  `            ``// Enqueue all children of the dequeued item ` `            ``for` `(``int` `i = 0; i < p.child.Count; i++) ` `                ``q.Enqueue(p.child[i]); ` `            ``n--; ` `        ``} ` `    ``} ` `    ``return` `numChildren; ` `} ` ` `  `// Driver Code ` `public` `static` `void` `Main(String[] args)  ` `{ ` `     `  `    ``// Creating a generic tree ` `    ``Node root = ``new` `Node(20); ` `    ``(root.child).Add(``new` `Node(2)); ` `    ``(root.child).Add(``new` `Node(34)); ` `    ``(root.child).Add(``new` `Node(50)); ` `    ``(root.child).Add(``new` `Node(60)); ` `    ``(root.child).Add(``new` `Node(70)); ` `    ``(root.child.child).Add(``new` `Node(15)); ` `    ``(root.child.child).Add(``new` `Node(20)); ` `    ``(root.child.child).Add(``new` `Node(30)); ` `    ``(root.child.child).Add(``new` `Node(40)); ` `    ``(root.child.child).Add(``new` `Node(100)); ` `    ``(root.child.child).Add(``new` `Node(20)); ` `    ``(root.child.child.child).Add(``new` `Node(25)); ` `    ``(root.child.child.child).Add(``new` `Node(50)); ` ` `  `    ``// Node whose number of ` `    ``// children is to be calculated ` `    ``int` `x = 50; ` ` `  `    ``// Function calling ` `    ``Console.WriteLine(numberOfChildren(root, x)); ` `} ` `} ` ` `  `// This code is contributed by 29AjayKumar `

Output:

```3
```

Time Complexity : O(N), where N is the number of nodes in tree.
Auxiliary Space : O(N), where N is the number of nodes in tree.

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.

My Personal Notes arrow_drop_up Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.

Improved By : 29AjayKumar, andrew1234

Article Tags :
Practice Tags :

1

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.