Skip to content
Related Articles

Related Articles

Improve Article

Remove all leaf nodes from a Generic Tree or N-ary Tree

  • Difficulty Level : Medium
  • Last Updated : 13 Aug, 2021
Geek Week

Given a Generic tree, the task is to delete the leaf nodes from the tree.

 Examples:

Input: 
              5
          /  /  \  \
         1   2   3   8
        /   / \   \
       15  4   5   6 

Output:  
5 : 1 2 3
1 :
2 :
3 :

Explanation: 
Deleted leafs are:
8, 15, 4, 5, 6

Input:      
              8
         /    |    \
       9      7       2
     / | \    |    / / | \ \
    4  5 6    10  11 1 2  2 3
Output:  
8: 9 7 2
9:
7:
2:

Approach: Follow the steps given below to solve the problem

  • Consider a function returning  root of the updated tree.
  • Traverse the tree and check the condition:
  • If the root is NULL return NULL.
  • If the root itself is a leaf then delete the root and return NULL.
  • Moving onto its children If the child node is a leaf then
    • Delete that node and update the children vector as well.
  • Recursively call for every child.

Below is the implementation of the above approach:

C++




// C++ program to delete the
// leaf from the generic tree
 
#include <bits/stdc++.h>
using namespace std;
 
// a treenode class
class TreeNode {
public:
    int data;
    vector<TreeNode*> children;
 
    TreeNode(int data)
    {
        this->data = data;
    }
};
 
// Recursive function which delete
// the leaf from tree
 
TreeNode* deleteleafnodes(TreeNode* root){
    if(root==NULL)return NULL;     //if root is NULL return NULL
    if(root->children.size()==0){  //if root itself is leaf then return NULL
        delete root;
        return NULL;
    }
    for(int i=0;i<root->children.size();i++){//moving onto its children
        TreeNode* child=root->children[i];
        if(child->children.size()==0){       // if leaf then delete that node
            delete child;
            for(int j=i;j<root->children.size()-1;j++){// update the children vector as well
                root->children[j]=root->children[j+1];
            }
            root->children.pop_back();
            i--;
        }
    }
    for(int i=0;i<root->children.size();i++){  //recursive call
        root->children[i]=deleteleafnodes(root->children[i]);
    }
    return root;
}
 
 
// Function which will print the
// tree level wise
void printTheTree(TreeNode* root)
{
    if (root == NULL)
        return;
 
    cout << root->data << " "
         << ":";
    for (int i = 0;
         i < root->children.size();
         i++)
        cout << root->children[i]->data
 
             << " ";
    cout << endl;
 
    for (int i = 0;
         i < root->children.size();
         i++)
        printTheTree(root->children[i]);
}
 
// Driver code
int main()
{
    // 5
    //      / / \ \
    // 1  2  3  8
    //    /   /\  \
    // 15  4  5  6
 
    TreeNode* root = new TreeNode(5);
    TreeNode* child1 = new TreeNode(1);
    root->children.push_back(child1);
    TreeNode* child11 = new TreeNode(15);
    child1->children.push_back(child11);
    TreeNode* child2 = new TreeNode(2);
    root->children.push_back(child2);
    TreeNode* child21 = new TreeNode(4);
    TreeNode* child22 = new TreeNode(5);
    child2->children.push_back(child21);
    child2->children.push_back(child22);
    TreeNode* child3 = new TreeNode(3);
    root->children.push_back(child3);
    TreeNode* child31 = new TreeNode(6);
    child3->children.push_back(child31);
    TreeNode* child4 = new TreeNode(8);
    root->children.push_back(child4);
 
    TreeNode* temp=deleteleafnodes(root);
    printTheTree(temp);
}

Java




// Java program to delete the
// leaf from the generic tree
import java.util.*;
 
class GFG
{
  
// a treenode class
static class TreeNode {
 
    int data;
    ArrayList<TreeNode> children;
  
    TreeNode(int data)
    {
        this.data = data;
        this.children = new ArrayList<>();
    }
};
  
// Recursive function which delete
// the leaf from tree
static TreeNode removeLeaf(TreeNode root)
{   if(root==null){ return null;}// if root is null return null
    if(root.children.size()==0){// if root itself is leaf return null
     return null;}
    // if root.children is a leaf node
    // then delete it from children vector
    for (int i = 0; i < root.children.size(); i++) {
  
        TreeNode child= root.children.get(i);
  
        // if it is  a leaf
        if (child.children.size() == 0) {
  
            // shifting the vector to left
            // after the point i
            for (int j = i; j < root.children.size() - 1; j++)
                root.children.set(j, root.children.get(j + 1));
  
            // delete the last element
            root.children.remove(root.children.size()-1);
  
            i--;
        }
    }
  
    // Remove all leaf node
    // of children of root
    for (int i = 0;
         i < root.children.size();
         i++) {
  
        // call function for root.children
        root.children.set(i,removeLeaf(root.children.get(i)));
    }
 return root;
}
  
// Function which will print the
// tree level wise
static void printTheTree(TreeNode root)
{
    if (root == null)
        return;
     
    System.out.print(root.data+" :");
 
    for (int i = 0; i < root.children.size(); i++)
        System.out.print(root.children.get(i).data+" ");
 
    System.out.println();
  
    for (int i = 0; i < root.children.size(); i++)
        printTheTree(root.children.get(i));
}
  
// Driver code
public static void main(String []args)
{
    //     5
    //  / / \ \
    // 1  2  3  8
    //   /   /\  \
    // 15  4  5  6
  
    TreeNode root = new TreeNode(5);
    TreeNode child1 = new TreeNode(1);
    root.children.add(child1);
    TreeNode child11 = new TreeNode(15);
    child1.children.add(child11);
    TreeNode child2 = new TreeNode(2);
    root.children.add(child2);
    TreeNode child21 = new TreeNode(4);
    TreeNode child22 = new TreeNode(5);
    child2.children.add(child21);
    child2.children.add(child22);
    TreeNode child3 = new TreeNode(3);
    root.children.add(child3);
    TreeNode child31 = new TreeNode(6);
    child3.children.add(child31);
    TreeNode child4 = new TreeNode(8);
    root.children.add(child4);
  
    root=removeLeaf(root);
    printTheTree(root);
}
}
 
// This code is contributed by rutvik_56

Python3




# Python program to delete the
# leaf from the generic tree
 
# a treenode class
class TreeNode:
    def __init__(self, data):
        self.data = data
        self.children = []
 
# Recursive function which delete
# the leaf from tree
def removeLeaf(root):
    if(root==None): return None #if root is None return None
    if(len(root.children)==0):return None #if root itself is leaf return None
    # if root.children is a leaf node
    # then delete it from children vector
    i = 0
    while i < len(root.children):
        child = root.children[i]
 
        # if it is  a leaf
        if (len(child.children) == 0):
 
            # shifting the vector to left
            # after the point i
            for j in range(i, len(root.children) - 1):
                root.children[j] = root.children[j + 1]
 
            # delete the last element
            root.children.pop()
            i -= 1
        i += 1
 
    # Remove all leaf node
    # of children of root
    for i in range(len(root.children)):
 
        # call function for root.children
        root.children[i]=removeLeaf(root.children[i])
    return root
# Function which will print the
# tree level wise
def printTheTree(root):
    if (root == None):
        return
    print("{} :".format(root.data), end="")
    for i in range(len(root.children)):
        print("{} ".format(root.children[i].data), end="")
    print()
    for i in range(len(root.children)):
        printTheTree(root.children[i])
 
# Driver code
if __name__ == "__main__":
 
    #         5
    #      / / \ \
    #    1  2  3  8
    #   /   /\  \
    #  15  4  5  6
 
    root = TreeNode(5)
    child1 = TreeNode(1)
    root.children.append(child1)
    child11 = TreeNode(15)
    child1.children.append(child11)
    child2 = TreeNode(2)
    root.children.append(child2)
    child21 = TreeNode(4)
    child22 = TreeNode(5)
    child2.children.append(child21)
    child2.children.append(child22)
    child3 = TreeNode(3)
    root.children.append(child3)
    child31 = TreeNode(6)
    child3.children.append(child31)
    child4 = TreeNode(8)
    root.children.append(child4)
 
    root=removeLeaf(root)
    printTheTree(root)
 
# This code is contributed by sanjeev2552

C#




// C# program to delete the
// leaf from the generic tree
using System;
using System.Collections;
using System.Collections.Generic;
  
class GFG
{
   
// a treenode class
public class TreeNode {
  
    public int data;
    public ArrayList children;
   
    public TreeNode(int data)
    {
        this.data = data;
        this.children = new ArrayList();
    }
};
   
// Recursive function which delete
// the leaf from tree
public static TreeNode removeLeaf(TreeNode root)
{   if(root==null) {return null;}//if root is null return null
    if(root.children.Count==0){//if root itself is leaf return null
     return null;}
    // if root.children is a leaf node
    // then delete it from children vector
    for (int i = 0; i < root.children.Count; i++) {
   
        TreeNode child= (TreeNode)root.children[i];
   
        // if it is  a leaf
        if (child.children.Count == 0) {
   
            // shifting the vector to left
            // after the point i
            for (int j = i; j < root.children.Count - 1; j++)
            {
                root.children[j]= root.children[j + 1];
            }
   
            // delete the last element
            root.children.RemoveAt(root.children.Count - 1);
   
            i--;
        }
    }
   
    // Remove all leaf node
    // of children of root
    for (int i = 0; i < root.children.Count; i++)
    {
        // call function for root.children
        root.children[i]=removeLeaf((TreeNode)root.children[i]);
    }
 return root;
}
   
// Function which will print the
// tree level wise
static void printTheTree(TreeNode root)
{
    if (root == null)
        return;
      
    Console.Write(root.data+" :");
  
    for (int i = 0; i < root.children.Count; i++)
        Console.Write(((TreeNode)root.children[i]).data + " ");
  
    Console.WriteLine();
   
    for (int i = 0; i < root.children.Count; i++)
        printTheTree((TreeNode)root.children[i]);
}
   
// Driver code
public static void Main(string []args)
{
    //     5
    //  / / \ \
    // 1  2  3  8
    //   /   /\  \
    // 15  4  5  6
   
    TreeNode root = new TreeNode(5);
    TreeNode child1 = new TreeNode(1);
    root.children.Add(child1);
    TreeNode child11 = new TreeNode(15);
    child1.children.Add(child11);
    TreeNode child2 = new TreeNode(2);
    root.children.Add(child2);
    TreeNode child21 = new TreeNode(4);
    TreeNode child22 = new TreeNode(5);
    child2.children.Add(child21);
    child2.children.Add(child22);
    TreeNode child3 = new TreeNode(3);
    root.children.Add(child3);
    TreeNode child31 = new TreeNode(6);
    child3.children.Add(child31);
    TreeNode child4 = new TreeNode(8);
    root.children.Add(child4);
   
    root=removeLeaf(root);
    printTheTree(root);
}
}
 
// This code is contributed by pratham76

Javascript




<script>
 
// Javascript program to delete the
// leaf from the generic tree
  
// a treenode class
class TreeNode {
     
    constructor(data)
    {
        this.data = data;
        this.children = []
    }
};
   
// Recursive function which delete
// the leaf from tree
function removeLeaf(root)
{
    if(root==null){
        return null;
    } //if root is null return null
    if(root.children.length==0){
        //if root itself is leaf return null
         return null;
    }
    // if root.children is a leaf node
    // then delete it from children vector
    for (var i = 0; i < root.children.length; i++) {
   
        var child= root.children[i];
   
        // if it is  a leaf
        if (child.children.length == 0) {
   
            // shifting the vector to left
            // after the point i
            for (var j = i; j < root.children.length - 1; j++)
            {
                root.children[j]= root.children[j + 1];
            }
   
            // delete the last element
            root.children.pop();
   
            i--;
        }
    }
   
    // Remove all leaf node
    // of children of root
    for (var i = 0; i < root.children.length; i++)
    {
        // call function for root.children
        root.children[i]=removeLeaf(root.children[i]);
    }
     return root;
}
   
// Function which will print the
// tree level wise
function printTheTree(root)
{
    if (root == null)
        return;
      
    document.write(root.data+" :");
  
    for (var i = 0; i < root.children.length; i++)
        document.write((root.children[i]).data + " ");
  
    document.write("<br>");
   
    for (var i = 0; i < root.children.length; i++)
        printTheTree(root.children[i]);
}
   
// Driver code
//     5
//  / / \ \
// 1  2  3  8
//   /   /\  \
// 15  4  5  6
 
var root = new TreeNode(5);
var child1 = new TreeNode(1);
root.children.push(child1);
var child11 = new TreeNode(15);
child1.children.push(child11);
var child2 = new TreeNode(2);
root.children.push(child2);
var child21 = new TreeNode(4);
var child22 = new TreeNode(5);
child2.children.push(child21);
child2.children.push(child22);
var child3 = new TreeNode(3);
root.children.push(child3);
var child31 = new TreeNode(6);
child3.children.push(child31);
var child4 = new TreeNode(8);
root.children.push(child4);
 
root=removeLeaf(root);
printTheTree(root);
 
</script>
Output: 



5 :1 2 3 
1 :
2 :
3 :

 

Time Complexity: O(N)  
Auxiliary Space: O(N)
 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.




My Personal Notes arrow_drop_up
Recommended Articles
Page :