Largest permutation after at most k swaps
Given a permutation of first n natural numbers as array and an integer k. Print the lexicographically largest permutation after at most k swaps
Examples:
Input: arr[] = {4, 5, 2, 1, 3} k = 3 Output: 5 4 3 2 1 Swap 1st and 2nd elements: 5 4 2 1 3 Swap 3rd and 5th elements: 5 4 3 1 2 Swap 4th and 5th elements: 5 4 3 2 1 Input: arr[] = {2, 1, 3} k = 1 Output: 3 1 2 Swap 1st and 3re elements: 3 1 2
Naive approach: The idea is to generate one by one permutation in lexicographically decreasing order. Compare every generated permutation with original array and count the number of swaps required to convert. If count is less than or equal to k, print this permutation. The problem of this approach is that it would be difficult to implement and will definitely time out for the large value of N.
Algorithm:
- To find the minimum swaps to convert one array to another read this article.
- Copy the original array and sort that array in decreasing order. So the sorted array is the largest permutation of the original array.
- Now generate all permutation in lexicographically decreasing order. Previous permutation is calculated using prev_permutation() function.
- Find the minimum steps required to convert the new array (permutation in decreasing order) to original array, if the count is less than or equal to k. Then print the array and break.
Implementation:
C++14
#include <bits/stdc++.h> using namespace std; // Function returns the minimum number // of swaps required to sort the array // This method is taken from below post // https:// www.geeksforgeeks.org/ // minimum-number-swaps-required-sort-array/ int minSwapsToSort( int arr[], int n) { // Create an array of pairs where first // element is array element and second // element is position of first element pair< int , int > arrPos[n]; for ( int i = 0; i < n; i++) { arrPos[i].first = arr[i]; arrPos[i].second = i; } // Sort the array by array element // values to get right position of // every element as second // element of pair. sort(arrPos, arrPos + n); // To keep track of visited elements. // Initialize all elements as not // visited or false. vector< bool > vis(n, false ); // Initialize result int ans = 0; // Traverse array elements for ( int i = 0; i < n; i++) { // Already swapped and corrected or // already present at correct pos if (vis[i] || arrPos[i].second == i) continue ; // Find out the number of node in // this cycle and add in ans int cycle_size = 0; int j = i; while (!vis[j]) { vis[j] = 1; // move to next node j = arrPos[j].second; cycle_size++; } // Update answer by adding current // cycle. ans += (cycle_size - 1); } // Return result return ans; } // method returns minimum number of // swap to make array B same as array A int minSwapToMakeArraySame( int a[], int b[], int n) { // Map to store position of elements // in array B we basically store // element to index mapping. map< int , int > mp; for ( int i = 0; i < n; i++) mp[b[i]] = i; // now we're storing position of array // A elements in array B. for ( int i = 0; i < n; i++) b[i] = mp[a[i]]; /* We can uncomment this section to print modified b array for (int i = 0; i < N; i++) cout << b[i] << " "; cout << endl; */ // Returning minimum swap for sorting // in modified array B as final answer return minSwapsToSort(b, n); } // Function to calculate largest // permutation after atmost K swaps void KswapPermutation( int arr[], int n, int k) { int a[n]; // copy the array for ( int i = 0; i < n; i++) a[i] = arr[i]; // Sort the array in descending order sort(arr, arr + n, greater< int >()); // generate permutation in lexicographically // decreasing order. do { // copy the array int a1[n], b1[n]; for ( int i = 0; i < n; i++) { a1[i] = arr[i]; b1[i] = a[i]; } // Check if it can be made same in k steps if ( minSwapToMakeArraySame( a1, b1, n) <= k) { // Print the array for ( int i = 0; i < n; i++) cout << arr[i] << " " ; break ; } // move to previous permutation } while (prev_permutation(arr, arr + n)); } int main() { int arr[] = { 4, 5, 2, 1, 3 }; int n = sizeof (arr) / sizeof (arr[0]); int k = 3; cout << "Largest permutation after " << k << " swaps:\n" ; KswapPermutation(arr, n, k); return 0; } // This code is contributed by karandeep1234 |
Java
// Java program for above approach import java.util.*; public class Solution { static class Pair { int first, second; Pair( int f, int s) { first = f; second = s; } } // Function returns the minimum number // of swaps required to sort the array static int minSwapsToSort( int arr[], int n) { // Create an array of pairs where first // element is array element and second // element is position of first element ArrayList<Pair> arrPos = new ArrayList<>(); for ( int i = 0 ; i < n; i++) { arrPos.add( new Pair(arr[i], i)); } // Sort the array by array element // values to get right position of // every element as second // element of pair. Collections.sort(arrPos, (Pair A, Pair B) -> { return A.first - B.first; }); // To keep track of visited elements. // Initialize all elements as not // visited or false. boolean [] vis = new boolean [n]; // Initialize result int ans = 0 ; // Traverse array elements for ( int i = 0 ; i < n; i++) { // Already swapped and corrected or // already present at correct pos if (vis[i] || arrPos.get(i).second == i) continue ; // Find out the number of node in // this cycle and add in ans int cycle_size = 0 ; int j = i; while (!vis[j]) { vis[j] = true ; // move to next node j = arrPos.get(j).second; cycle_size++; } // Update answer by adding current // cycle. ans += (cycle_size - 1 ); } // Return result return ans; } // method returns minimum number of // swap to make array B same as array A static int minSwapToMakeArraySame( int a[], int b[], int n) { // Map to store position of elements // in array B we basically store // element to index mapping. HashMap<Integer, Integer> mp = new HashMap<>(); for ( int i = 0 ; i < n; i++) mp.put(b[i], i); // now we're storing position of array // A elements in array B. for ( int i = 0 ; i < n; i++) b[i] = mp.get(a[i]); /* We can uncomment this section to print modified b array for (int i = 0; i < N; i++) System.out.print(b[i]); System.out.println(); */ // Returning minimum swap for sorting // in modified array B as final answer return minSwapsToSort(b, n); } // Function to calculate largest // permutation after atmost K swaps static void KswapPermutation( int [] arr, int n, int k) { int a[] = new int [n]; // copy the array for ( int i = 0 ; i < n; i++) a[i] = arr[i]; // Sort the array in descending order // Arrays.sort(arr); Arrays.sort(arr); for ( int idx = 0 ; idx < n / 2 ; idx++) { int t = arr[idx]; arr[idx] = arr[n - idx - 1 ]; arr[n - idx - 1 ] = t; } // generate permutation in lexicographically // decreasing order. do { // copy the array int [] a1 = new int [n]; int [] b1 = new int [n]; for ( int i = 0 ; i < n; i++) { a1[i] = arr[i]; b1[i] = a[i]; } // Check if it can be made same in k steps if (minSwapToMakeArraySame(a1, b1, n) <= k) { // Print the array for ( int i = 0 ; i < n; i++) System.out.print(arr[i] + " " ); break ; } // move to previous permutation } while (prev_permutation(arr, n)); } static boolean prev_permutation( int [] s, int n) { // Find the largest index i such that s[i-1] is more // than s[i] int i = n - 1 ; while (i > 0 && s[i - 1 ] <= s[i]) { // Return false if i is at the first index of // the string. if (--i == 0 ) { return false ; } } // Find the highest index j such that j >= i and // s[j] < s[i-1] int j = i; while (j < n && s[j] <= s[i - 1 ]) { j++; } j--; // Swap character at index i-1 with index j int t = s[i - 1 ]; s[i - 1 ] = s[j]; s[j] = t; // Reverse substring s[i to n-1] and return true int l = i; int r = n - 1 ; while (l < r) { t = s[l]; s[l] = s[r]; s[r] = t; l++; r--; } return true ; } public static void main(String[] args) { int arr[] = { 2 , 1 , 3 }; int n = arr.length; int k = 1 ; System.out.println( "Largest permutation after " + k + " swaps:" ); KswapPermutation(arr, n, k); } } // This code is contributed by karandeep1234. |
Python3
#Function returns the minimum number of swaps required to sort the array def min_swaps_to_sort(arr, n): # Create an array of pairs where first # element is array element and second # element is position of first element arr_pos = [(arr[i], i) for i in range (n)] # Sort the array by array element values to get right position of # every element as second element of pair. arr_pos.sort(key = lambda x: x[ 0 ]) # To keep track of visited elements. Initialize all elements as not # visited or false. vis = [ False ] * n # Initialize result ans = 0 # Traverse array elements for i in range (n): # Already swapped and corrected or already present at correct pos if vis[i] or arr_pos[i][ 1 ] = = i: continue # Find out the number of nodes in this cycle and add in ans cycle_size = 0 j = i while not vis[j]: vis[j] = True # move to next node j = arr_pos[j][ 1 ] cycle_size + = 1 # Update answer by adding current cycle. ans + = (cycle_size - 1 ) # Return result return ans #Method returns minimum number of swap to make array B same as array A def min_swap_to_make_array_same(a, b, n): # Map to store position of elements in array B we basically store # element to index mapping. mp = {b[i]: i for i in range (n)} # Now store position of array A elements in array B. for i in range (n): b[i] = mp[a[i]] # Returning minimum swap for sorting in modified array B as final answer return min_swaps_to_sort(b, n) # Function to calculate largest permutation after at most K swaps def k_swap_permutation(arr, n, k): # Copy the array a = arr.copy() # Sort the array in descending order arr.sort(reverse = True ) # Generate permutation in lexicographically decreasing order. while True : # Copy the array a1 = arr.copy() b1 = a.copy() # Check if it can be made same in k steps if min_swap_to_make_array_same(a1, b1, n) < = k: # Print the array return arr break # Move to previous permutation if not prev_permutation(arr): break arr = [ 4 , 5 , 2 , 1 , 3 ] n = len (arr) k = 3 print ( "Largest permutation after" , k, "swaps:" ) print (k_swap_permutation(arr, n, k)) # contributed by akashish__ |
C#
// C# program for above approach using System; using System.Collections.Generic; using System.Linq; public class GFG { class Pair { public int first, second; public Pair( int f, int s) { first = f; second = s; } } // Function returns the minimum number // of swaps required to sort the array static int minSwapsToSort( int [] arr, int n) { // Create an array of pairs where first // element is array element and second // element is position of first element List<Pair> arrPos = new List<Pair>(); for ( int i = 0; i < n; i++) { arrPos.Add( new Pair(arr[i], i)); } // Sort the array by array element // values to get right position of // every element as second // element of pair. arrPos.Sort((Pair A, Pair B) => { return A.first - B.first; }); // To keep track of visited elements. // Initialize all elements as not // visited or false. bool [] vis = new bool [n]; // Initialize result int ans = 0; // Traverse array elements for ( int i = 0; i < n; i++) { // Already swapped and corrected or // already present at correct pos if (vis[i] || arrPos[i].second == i) continue ; // Find out the number of node in // this cycle and add in ans int cycle_size = 0; int j = i; while (!vis[j]) { vis[j] = true ; // move to next node j = arrPos[j].second; cycle_size++; } // Update answer by adding current // cycle. ans += (cycle_size - 1); } // Return result return ans; } // method returns minimum number of // swap to make array B same as array A static int minSwapToMakeArraySame( int [] a, int [] b, int n) { // Map to store position of elements // in array B we basically store // element to index mapping. Dictionary< int , int > mp = new Dictionary< int , int >(); for ( int i = 0; i < n; i++) mp.Add(b[i], i); // now we're storing position of array // A elements in array B. for ( int i = 0; i < n; i++) b[i] = mp[a[i]]; /* We can uncomment this section to print modified b array for (int i = 0; i < N; i++) System.out.print(b[i]); System.out.println(); */ // Returning minimum swap for sorting // in modified array B as final answer return minSwapsToSort(b, n); } // Function to calculate largest // permutation after atmost K swaps static void KswapPermutation( int [] arr, int n, int k) { int [] a = new int [n]; // copy the array for ( int i = 0; i < n; i++) a[i] = arr[i]; // Sort the array in descending order // Arrays.sort(arr); Array.Sort(arr); for ( int idx = 0; idx < n / 2; idx++) { int t = arr[idx]; arr[idx] = arr[n - idx - 1]; arr[n - idx - 1] = t; } // generate permutation in lexicographically // decreasing order. do { // copy the array int [] a1 = new int [n]; int [] b1 = new int [n]; for ( int i = 0; i < n; i++) { a1[i] = arr[i]; b1[i] = a[i]; } // Check if it can be made same in k steps if (minSwapToMakeArraySame(a1, b1, n) <= k) { // Print the array for ( int i = 0; i < n; i++) Console.Write(arr[i] + " " ); break ; } // move to previous permutation } while (prev_permutation(arr, n)); } static bool prev_permutation( int [] s, int n) { // Find the largest index i such that s[i-1] is more // than s[i] int i = n - 1; while (i > 0 && s[i - 1] <= s[i]) { // Return false if i is at the first index of // the string. if (--i == 0) { return false ; } } // Find the highest index j such that j >= i and // s[j] < s[i-1] int j = i; while (j < n && s[j] <= s[i - 1]) { j++; } j--; // Swap character at index i-1 with index j int t = s[i - 1]; s[i - 1] = s[j]; s[j] = t; // Reverse substring s[i to n-1] and return true int l = i; int r = n - 1; while (l < r) { t = s[l]; s[l] = s[r]; s[r] = t; l++; r--; } return true ; } static public void Main() { int [] arr = { 2, 1, 3 }; int n = arr.Length; int k = 1; Console.WriteLine( "Largest permutation after " + k + " swaps:" ); KswapPermutation(arr, n, k); } } // This code is contributed by akashish__ |
Javascript
// Function returns the minimum number // of swaps required to sort the array // This method is taken from below post // https:// www.geeksforgeeks.org/ // minimum-number-swaps-required-sort-array/ function minSwapsToSort(arr, n) { // Create an array of pairs where first // element is array element and second // element is position of first element let arrPos = new Array(n); for (let i = 0; i < n; i++) { arrPos[i] = {first: arr[i], second: i}; } // Sort the array by array element // values to get right position of // every element as second // element of pair. arrPos.sort((a, b) => a.first - b.first); // To keep track of visited elements. // Initialize all elements as not // visited or false. let vis = new Array(n).fill( false ); // Initialize result let ans = 0; // Traverse array elements for (let i = 0; i < n; i++) { // Already swapped and corrected or // already present at correct pos if (vis[i] || arrPos[i].second === i) continue ; // Find out the number of node in // this cycle and add in ans let cycle_size = 0; let j = i; while (!vis[j]) { vis[j] = true ; // move to next node j = arrPos[j].second; cycle_size++; } // Update answer by adding current // cycle. ans += (cycle_size - 1); } // Return result return ans; } // method returns minimum number of // swap to make array B same as array A function minSwapToMakeArraySame(a, b, n) { // Map to store position of elements // in array B we basically store // element to index mapping. let mp = new Map(); for (let i = 0; i < n; i++) mp.set(b[i], i); // now we're storing position of array // A elements in array B. for (let i = 0; i < n; i++) b[i] = mp.get(a[i]); /* We can uncomment this section to print modified b array for (let i = 0; i < N; i++) console.log(b[i]); console.log(); */ // Returning minimum swap for sorting // in modified array B as final answer return minSwapsToSort(b, n); } // Function to calculate largest // permutation after atmost K swaps function KswapPermutation(arr, n, k) { // copy the array let a = arr.slice(); // Sort the array in descending order arr.sort(); arr.reverse(); // generate permutation in lexicographically // decreasing order. do { // copy the array let a1 = [0]*n; let b1 = [0]*n; for (let i = 0; i < n; i++) { a1[i] = arr[i]; b1[i] = a[i]; } // Check if it can be made same in k steps if ( minSwapToMakeArraySame( a1, b1, n) <= k) { // Print the array console.log(arr); break ; } // move to previous permutation } while (prev_permutation(arr, arr + n)); } let arr = [ 4, 5, 2, 1, 3 ]; let n = arr.length; let k = 3; console.log( "Largest permutation after" ,k, "swaps:" ); KswapPermutation(arr, n, k); // This code is contributed by akashish__ |
Largest permutation after 3 swaps: 5 4 3 2 1
Complexity Analysis:
- Time Complexity: O(N!).
To generate all permutation O(N!) time complexity is required. - Space Complexity: O(n).
to store the new array O(n) space is required.
Another approach worth considering :
This problem can be considered as an instance of a “controlled” selection sort . By controlled , we mean that we are not performing the selection sort operation on the entire array. Instead, we are constructing ourselves to only the total number of swaps K that we are allowed to perform.
So in the following approach , all we need to do is simply let the selection sort go on for k times , not more than that . Also we need to check if the position of the maximum number we’re about to swap with the current position i is equal to the number already present in that position , and we need to jump over this particular situation , nevertheless we shouldn’t waste our limited number of swaps .
Implementation:
C++14
#include <bits/stdc++.h> using namespace std; void KswapPermutation( int arr[], int n, int k) { for ( int i=0;i<n-1;i++) { if ( k>0) { int max = i; for ( int j=i+1;j<n;j++) if (arr[j]>arr[max]) max = j; // this condition checks whether the max value has changed since when // we started , or is it the same. // We need to ignore the swap if the value is same. // It means that the number ought to be present at the ith position , is already // there. if (max!=i) { int temp = arr[max]; arr[max] = arr[i]; arr[i] = temp; k--; } } else break ; } } // Driver code int main() { int arr[] = { 4, 5, 2, 1, 3 }; int n = sizeof (arr) / sizeof (arr[0]); int k = 3; KswapPermutation(arr, n, k); cout << "Largest permutation after " << k << " swaps:" <<endl; for ( int i = 0; i < n; ++i) cout<<arr[i]<< " " ; return 0; } |
Java
/*package whatever //do not write package name here */ import java.io.*; class GFG { static void KswapPermutation( int arr[], int n, int k) { for ( int i = 0 ; i < n - 1 ; i++) { if (k > 0 ) { int max = i; for ( int j = i + 1 ; j < n; j++) if (arr[j] > arr[max]) max = j; // this condition checks whether the max // value has changed since when we started , // or is it the same. We need to ignore the // swap if the value is same. It means that // the number ought to be present at the ith // position , is already there. if (max != i) { int temp = arr[max]; arr[max] = arr[i]; arr[i] = temp; k--; } } else break ; } } public static void main(String[] args) { int arr[] = { 4 , 5 , 2 , 1 , 3 }; int n = arr.length; int k = 3 ; KswapPermutation(arr, n, k); System.out.println( "Largest permutation after " + k + " swaps:" ); for ( int i = 0 ; i < n; ++i) System.out.print(arr[i] + " " ); } } // This code is contributed by aadityaburujwale. |
Python3
def KswapPermutation(arr, n, k): for i in range ( 0 , n - 1 ): if (k > 0 ): max = i for j in range (i + 1 , n): if (arr[j] > arr[ max ]): max = j # this condition checks whether the max value has changed since when # we started , or is it the same. # We need to ignore the swap if the value is same. # It means that the number ought to be present at the ith position , is already # there. if ( max ! = i): temp = arr[ max ] arr[ max ] = arr[i] arr[i] = temp k = k - 1 else : break # Driver code arr = [ 4 , 5 , 2 , 1 , 3 ] n = len (arr) k = 3 KswapPermutation(arr, n, k) print ( "Largest permutation after " + str (k) + " swaps:" ) for i in range ( 0 , n): print (arr[i], end = ' ' ) # This code is contributed by Harsh Khatri |
C#
using System; using System.Collections.Generic; class GFG { static void KswapPermutation( int [] arr, int n, int k) { for ( int i = 0; i < n - 1; i++) { if (k > 0) { int max = i; for ( int j = i + 1; j < n; j++) if (arr[j] > arr[max]) { max = j; } // this condition checks whether the max // value has changed since when we started , // or is it the same. We need to ignore the // swap if the value is same. It means that // the number ought to be present at the ith // position , is already there. if (max != i) { int temp = arr[max]; arr[max] = arr[i]; arr[i] = temp; k--; } } else break ; } } // Driver code public static void Main( string [] args) { int [] arr = { 4, 5, 2, 1, 3 }; int n = 5; int k = 3; KswapPermutation(arr, n, k); Console.WriteLine( "Largest permutation after " + k + " swaps:" ); for ( int i = 0; i < n; i++) Console.Write(arr[i] + " " ); } } // This code is contributed by garg28harsh. |
Javascript
<script> function KswapPermutation(arr, n, k) { for (let i=0;i<n-1;i++) { if ( k>0) { let max = i; for (let j=i+1;j<n;j++) if (arr[j]>arr[max]) max = j; // this condition checks whether the max value has changed since when // we started , or is it the same. // We need to ignore the swap if the value is same. // It means that the number ought to be present at the ith position , is already // there. if (max!=i) { let temp = arr[max]; arr[max] = arr[i]; arr[i] = temp; k--; } } else break ; } } // Driver code let arr = [ 4, 5, 2, 1, 3 ]; let n = 5; let k = 3; KswapPermutation(arr, n, k); document.write( "Largest permutation after " + k + " swaps:" ); document.write(arr); </srcipt> |
Largest permutation after 3 swaps: 5 4 3 2 1
Complexity analysis :
- Time complexity : O(n^2) , because this approach utilizes selection sort
- Space complexity : O(1) , because the sort is in place and no extra space is needed
Efficient approach:
This is a greedy approach. The largest permutation is found when the largest elements are at the front of the array, i.e. the largest elements are sorted in decreasing order. There are at most k swaps so put the 1st, 2nd, 3rd, …, kth largest element at their respective position.
Note: If the number of swaps allowed is equal to the size of the array, then there is no need to iterate over the whole array. The answer will simply be the reverse sorted array.
Algorithm:
- Create a HashMap or an array of length n to store element-index pair or map element to its index.
- Now run a loop k times.
- In each iteration swap the ith element with the element n – i. where i is the index or count of the loop. Also swap their position, i.e. update the hashmap or array. So in this step the largest element in remaining element is swapped to the front.
- Print the output array.
Implementation 1: This uses simple arrays to arrive at the solution.
C++
// Below is C++ code to print largest // permutation after at most K swaps #include <bits/stdc++.h> using namespace std; // Function to calculate largest // permutation after atmost K swaps void KswapPermutation( int arr[], int n, int k) { // Auxiliary dictionary of // storing the position of elements int pos[n + 1]; for ( int i = 0; i < n; ++i) pos[arr[i]] = i; for ( int i = 0; i < n && k; ++i) { // If element is already i'th largest, // then no need to swap if (arr[i] == n - i) continue ; // Find position of i'th // largest value, n-i int temp = pos[n - i]; // Swap the elements position pos[arr[i]] = pos[n - i]; pos[n - i] = i; // Swap the ith largest value with the // current value at ith place swap(arr[temp], arr[i]); // decrement number of swaps --k; } } // Driver code int main() { int arr[] = { 4, 5, 2, 1, 3 }; int n = sizeof (arr) / sizeof (arr[0]); int k = 3; KswapPermutation(arr, n, k); cout << "Largest permutation after " << k << " swaps:n" ; for ( int i = 0; i < n; ++i) printf ( "%d " , arr[i]); return 0; } |
Java
// Below is Java code to print // largest permutation after // atmost K swaps class GFG { // Function to calculate largest // permutation after atmost K swaps static void KswapPermutation( int arr[], int n, int k) { // Auxiliary dictionary of storing // the position of elements int pos[] = new int [n + 1 ]; for ( int i = 0 ; i < n; ++i) pos[arr[i]] = i; for ( int i = 0 ; i < n && k > 0 ; ++i) { // If element is already i'th // largest, then no need to swap if (arr[i] == n - i) continue ; // Find position of i'th largest // value, n-i int temp = pos[n - i]; // Swap the elements position pos[arr[i]] = pos[n - i]; pos[n - i] = i; // Swap the ith largest value with the // current value at ith place int tmp1 = arr[temp]; arr[temp] = arr[i]; arr[i] = tmp1; // decrement number of swaps --k; } } // Driver method public static void main(String[] args) { int arr[] = { 4 , 5 , 2 , 1 , 3 }; int n = arr.length; int k = 3 ; KswapPermutation(arr, n, k); System.out.print( "Largest permutation " + "after " + k + " swaps:\n" ); for ( int i = 0 ; i < n; ++i) System.out.print(arr[i] + " " ); } } // This code is contributed by Anant Agarwal. |
Python3
# Python code to print largest permutation after K swaps def KswapPermutation(arr, n, k): # Auxiliary array of storing the position of elements pos = {} for i in range (n): pos[arr[i]] = i for i in range (n): # If K is exhausted then break the loop if k = = 0 : break # If element is already largest then no need to swap if (arr[i] = = n - i): continue # Find position of i'th largest value, n-i temp = pos[n - i] # Swap the elements position pos[arr[i]] = pos[n - i] pos[n - i] = i # Swap the ith largest value with the value at # ith place arr[temp], arr[i] = arr[i], arr[temp] # Decrement K after swap k = k - 1 # Driver code arr = [ 4 , 5 , 2 , 1 , 3 ] n = len (arr) k = 3 KswapPermutation(arr, n, k) # Print the answer print ( "Largest permutation after" , k, "swaps: " ) print ( " " .join( map ( str , arr))) |
C#
// Below is C# code to print largest // permutation after atmost K swaps. using System; class GFG { // Function to calculate largest // permutation after atmost K // swaps static void KswapPermutation( int [] arr, int n, int k) { // Auxiliary dictionary of storing // the position of elements int [] pos = new int [n + 1]; for ( int i = 0; i < n; ++i) pos[arr[i]] = i; for ( int i = 0; i < n && k > 0; ++i) { // If element is already i'th // largest, then no need to swap if (arr[i] == n - i) continue ; // Find position of i'th largest // value, n-i int temp = pos[n - i]; // Swap the elements position pos[arr[i]] = pos[n - i]; pos[n - i] = i; // Swap the ith largest value with // the current value at ith place int tmp1 = arr[temp]; arr[temp] = arr[i]; arr[i] = tmp1; // decrement number of swaps --k; } } // Driver method public static void Main() { int [] arr = { 4, 5, 2, 1, 3 }; int n = arr.Length; int k = 3; KswapPermutation(arr, n, k); Console.Write( "Largest permutation " + "after " + k + " swaps:\n" ); for ( int i = 0; i < n; ++i) Console.Write(arr[i] + " " ); } } // This code is contributed nitin mittal. |
PHP
<?php // PHP code to print largest permutation // after atmost K swaps // Function to calculate largest // permutation after atmost K swaps function KswapPermutation(& $arr , $n , $k ) { for ( $i = 0; $i < $n ; ++ $i ) $pos [ $arr [ $i ]] = $i ; for ( $i = 0; $i < $n && $k ; ++ $i ) { // If element is already i'th largest, // then no need to swap if ( $arr [ $i ] == $n - $i ) continue ; // Find position of i'th largest // value, n-i $temp = $pos [ $n - $i ]; // Swap the elements position $pos [ $arr [ $i ]] = $pos [ $n - $i ]; $pos [ $n - $i ] = $i ; // Swap the ith largest value with the // current value at ith place $t = $arr [ $temp ]; $arr [ $temp ] = $arr [ $i ]; $arr [ $i ] = $t ; // decrement number of swaps -- $k ; } } // Driver code $arr = array (4, 5, 2, 1, 3); $n = sizeof( $arr ); $k = 3; KswapPermutation( $arr , $n , $k ); echo ( "Largest permutation after " ); echo ( $k ); echo ( " swaps:\n" ); for ( $i = 0; $i < $n ; ++ $i ) { echo ( $arr [ $i ] ); echo ( " " ); } // This code is contributed // by Shivi_Aggarwal ?> |
Javascript
// Below is Javascript code to print largest // permutation after at most K swaps // Function to calculate largest // permutation after atmost K swaps function KswapPermutation(arr, n, k) { // Auxiliary dictionary of // storing the position of elements let pos = new Array(n + 1); for (let i = 0; i < n; ++i) pos[arr[i]] = i; for (let i = 0; i < n && k; ++i) { // If element is already i'th largest, // then no need to swap if (arr[i] == n - i) continue ; // Find position of i'th // largest value, n-i let temp = pos[n - i]; // Swap the elements position pos[arr[i]] = pos[n - i]; pos[n - i] = i; // Swap the ith largest value with the // current value at ith place let tmp1 = arr[temp]; arr[temp] = arr[i]; arr[i] = tmp1; // decrement number of swaps --k; } } let arr = [ 4, 5, 2, 1, 3 ]; let n = arr.length; let k = 3; KswapPermutation(arr, n, k); console.log( "Largest permutation after " + k + " swaps:" + "</br>" ); for (let i = 0; i < n; ++i) console.log(arr[i] + " " ); // This code is contributed by garg28harsh. |
Largest permutation after 3 swaps:n5 4 3 2 1
Time complexity :- O(nlogn)
Space complexity :- O(N)
Implementation 2: This uses a hashmap to arrive at the solution.
C++
// C++ Program to find the // largest permutation after // at most k swaps using unordered_map. #include <bits/stdc++.h> #include <unordered_map> using namespace std; // Function to find the largest // permutation after k swaps void bestpermutation( int arr[], int k, int n) { // Storing the elements and // their index in map unordered_map< int , int > h; for ( int i = 0; i < n; i++) { h.insert(make_pair(arr[i], i)); } // If number of swaps allowed // are equal to number of elements // then the resulting permutation // will be descending order of // given permutation. if (n <= k) { sort(arr, arr + n, greater< int >()); } else { for ( int j = n; j >= 1; j--) { if (k > 0) { int initial_index = h[j]; int best_index = n - j; // if j is not at it's best index if (initial_index != best_index) { h[j] = best_index; // Change the index of the element // which was at position 0. Swap // the element basically. int element = arr[best_index]; h[element] = initial_index; swap( arr[best_index], arr[initial_index]); // decrement number of swaps k--; } } } } } // Driver code int main() { int arr[] = { 3, 1, 4, 2, 5 }; // K is the number of swaps int k = 10; // n is the size of the array int n = sizeof (arr) / sizeof ( int ); // Function calling bestpermutation(arr, k, n); cout << "Largest possible permutation after " << k << " swaps is " ; for ( int i = 0; i < n; i++) cout << arr[i] << " " ; return 0; } // This method is contributed by Kishan Mishra. |
Java
// Java Program to find the // largest permutation after // at most k swaps using unordered_map. import java.util.*; class GFG { // Function to find the largest // permutation after k swaps static void bestpermutation(ArrayList<Integer> arr, int k, int n) { // Storing the elements and // their index in map HashMap<Integer, Integer> h = new HashMap<Integer, Integer>(); for ( int i = 0 ; i < n; i++) { h.put(arr.get(i), i); } // If number of swaps allowed // are equal to number of elements // then the resulting permutation // will be descending order of // given permutation. if (n <= k) { Collections.sort(arr, Collections.reverseOrder()); } else { for ( int j = n; j >= 1 ; j--) { if (k > 0 ) { int initial_index = h.get(j); int best_index = n - j; // if j is not at it's best index if (initial_index != best_index) { h.put(j, best_index); // Change the index of the element // which was at position 0. Swap // the element basically. int element = arr.get(best_index); h.put(element, initial_index); int temp = arr.get(best_index); arr.set(best_index, arr.get(initial_index)); arr.set(initial_index, temp); // decrement number of swaps k--; } } } } } // Driver code public static void main(String []args) { ArrayList<Integer> arr = new ArrayList<Integer>(); arr.add( 3 ); arr.add( 1 ); arr.add( 4 ); arr.add( 2 ); arr.add( 5 ); // K is the number of swaps int k = 10 ; // n is the size of the array int n = arr.size(); // Function calling bestpermutation(arr, k, n); System.out.print( "Largest possible permutation after " + k + " swaps is " ); for ( int i = 0 ; i < n; i++) System.out.print(arr.get(i) + " " ); } } // This code is contributed by rutvik_56. |
Python3
# Python3 program to find the # largest permutation after # at most k swaps using unordered_map. # Function to find the largest # permutation after k swaps def bestpermutation(arr, k, n): # Storing the elements and # their index in map h = {} for i in range (n): h[arr[i]] = i # If number of swaps allowed # are equal to number of elements # then the resulting permutation # will be descending order of # given permutation. if (n < = k): arr.sort() arr.reverse() else : for j in range (n, 0 , - 1 ): if (k > 0 ): initial_index = h[j] best_index = n - j # If j is not at it's best index if (initial_index ! = best_index): h[j] = best_index # Change the index of the element # which was at position 0. Swap # the element basically. element = arr[best_index] h[element] = initial_index arr[best_index], arr[initial_index] = (arr[initial_index], arr[best_index]) # Decrement number of swaps k - = 1 # Driver Code arr = [ 3 , 1 , 4 , 2 , 5 ] # K is the number of swaps k = 10 # n is the size of the array n = len (arr) # Function calling bestpermutation(arr, k, n) print ( "Largest possible permutation after" , k, "swaps is" , end = " " ) for i in range (n): print (arr[i], end = " " ) # This code is contributed by divyesh072019 |
C#
// C# Program to find the // largest permutation after // at most k swaps using unordered_map. using System; using System.Collections.Generic; class GFG { // Function to find the largest // permutation after k swaps static void bestpermutation(List< int > arr, int k, int n) { // Storing the elements and // their index in map Dictionary< int , int > h = new Dictionary< int , int >(); for ( int i = 0; i < n; i++) { h.Add(arr[i], i); } // If number of swaps allowed // are equal to number of elements // then the resulting permutation // will be descending order of // given permutation. if (n <= k) { arr.Sort(); arr.Reverse(); } else { for ( int j = n; j >= 1; j--) { if (k > 0) { int initial_index = h[j]; int best_index = n - j; // if j is not at it's best index if (initial_index != best_index) { h[j] = best_index; // Change the index of the element // which was at position 0. Swap // the element basically. int element = arr[best_index]; h[element] = initial_index; int temp = arr[best_index]; arr[best_index] = arr[initial_index]; arr[initial_index] = temp; // decrement number of swaps k--; } } } } } static void Main() { List< int > arr = new List< int >( new int [] {3, 1, 4, 2, 5 }); // K is the number of swaps int k = 10; // n is the size of the array int n = arr.Count; // Function calling bestpermutation(arr, k, n); Console.Write( "Largest possible permutation after " + k + " swaps is " ); for ( int i = 0; i < n; i++) Console.Write(arr[i] + " " ); } } // This code is contributed by divyeshrabadiya07 |
Javascript
<script> // JavaScript Program to find the // largest permutation after // at most k swaps using unordered_map. // Function to find the largest // permutation after k swaps function bestpermutation(arr,k,n) { // Storing the elements and // their index in map let h = new Map(); for (let i = 0; i < n; i++) { h.set(arr[i], i); } // If number of swaps allowed // are equal to number of elements // then the resulting permutation // will be descending order of // given permutation. if (n <= k) { arr.sort( function (a,b){ return b-a;}); } else { for (let j = n; j >= 1; j--) { if (k > 0) { let initial_index = h[j]; let best_index = n - j; // if j is not at it's best index if (initial_index != best_index) { h.set(j, best_index); // Change the index of the element // which was at position 0. Swap // the element basically. let element = arr.get(best_index); h.set(element, initial_index); let temp = arr[best_index]; arr.set(best_index, arr[initial_index]); arr.set(initial_index, temp); // decrement number of swaps k--; } } } } } // Driver code let arr=[3,1,4,2,5]; // K is the number of swaps let k = 10; // n is the size of the array let n = arr.length; // Function calling bestpermutation(arr, k, n); document.write( "Largest possible permutation after " + k + " swaps is " ); for (let i = 0; i < n; i++) document.write(arr[i] + " " ); // This code is contributed by avanitrachhadiya2155 </script> |
Largest possible permutation after 10 swaps is 5 4 3 2 1
Complexity Analysis:
- Time Complexity: O(N).
Only one traversal of the array is required. - Space Complexity: O(n).
To store the new array O(n) space is required.
This article is contributed by Shubham Bansal. If you like GeeksforGeeks and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Please Login to comment...