Sort decreasing permutation of N using triple swaps

Given an array A[] consisting of decreasing permutation of N numbers, the task is to sort the array using triple swaps. If it is not possible to sort the array then print -1.

Triple swaps refer to cyclic right shift on chosen indices. Cyclic Right Shift: x –> y –> z –> x.

Examples:

Input: A[] = {4, 3, 2, 1}
Output: 1 2 3 4
Explanation:
For the given array the first step is choosing indexes: x = 0, y = 2, z = 3
Therefore, A[3] = A[2]; A[2] = A[0]; A[0] = A[3].
Before Swapping: 4 3 2 1 and After Swapping: 1 3 4 2.

For the given array the second step is choosing indexes: x = 1, y = 2, z = 3 Therefore, A[3] = A[2]; A[2] = A[1]; A[1] = A[3].
Before Swapping: 1 3 4 2 and After Swapping: 1 2 3 4.



Input: A[] = {5, 4, 3, 2, 1}
Output: 1 2 3 4 5
Explanation:
For the given array the first step is choosing indexes: x = 0, y = 3, z = 4 therefore,
A[4] = A[3]; A[3] = A[0]; A[0] = A[4], Before Swapping: 5 4 3 2 1 and After Swapping: 1 4 3 5 2

For the given array the second step is choosing indexes: x = 1, y = 3, z = 4 therefore,
A[4] = A[3]; A[3] = A[1]; A[1] = A[4], Before Swapping: 1 4 3 5 2 and After Swapping: 1 2 3 4 5

Approach:

To solve the problem mentioned above we have to choose three indexes in such a way so that we can bring at least one element at the correct position. By that, we mean that we have to bring 1 at index 0, 2 at index 1, and so on.

  1. x is chosen as the current index number i,
  2. z is chosen as the index of x + 1 which is always N – i – 1 and
  3. y is chosen accordingly.

Then we have to perform the swapping of elements by the cyclic right shift of elements using these indices.

Below is the implementation of the above approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ implementation to sort
// decreasing permutation of N
// using triple swaps
  
#include <bits/stdc++.h>
using namespace std;
  
// Function to sort Array
void sortArray(int A[], int N)
{
  
    // The three indices that
    // has to be chosen
    int x, y, z;
  
    // Check if possible to sort array
    if (N % 4 == 0 || N % 4 == 1) {
  
        // Swapping to bring element
        // at required position
        // Bringing at least one
        // element at correct position
        for (int i = 0; i < N / 2; i++) {
  
            x = i;
            if (i % 2 == 0) {
  
                y = N - i - 2;
                z = N - i - 1;
            }
  
            // Tracing changes in Array
            A[z] = A[y];
            A[y] = A[x];
            A[x] = x + 1;
        }
  
        // Print the sorted array
        cout << "Sorted Array: ";
  
        for (int i = 0; i < N; i++)
  
            cout << A[i] << " ";
    }
  
    // If not possible to sort
    else
  
        cout << "-1";
}
  
// Driver code
int main()
{
  
    int A[] = { 5, 4, 3, 2, 1 };
  
    int N = sizeof(A) / sizeof(A[0]);
  
    sortArray(A, N);
  
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java implementation to sort
// decreasing permutation of N
// using triple swaps
  
class GFG{
  
// Function to sort array
static void sortArray(int A[], int N)
{
  
    // The three indices that
    // has to be chosen
    int x = 0, y = 0, z = 0;
  
    // Check if possible to sort array
    if (N % 4 == 0 || N % 4 == 1)
    {
  
        // Swapping to bring element
        // at required position
        // Bringing at least one
        // element at correct position
        for(int i = 0; i < N / 2; i++)
        {
           x = i;
             
           if (i % 2 == 0)
           {
               y = N - i - 2;
               z = N - i - 1;
           }
             
           // Tracing changes in array
           A[z] = A[y];
           A[y] = A[x];
           A[x] = x + 1;
        }
          
        // Print the sorted array
        System.out.print("Sorted Array: ");
  
        for(int i = 0; i < N; i++)
           System.out.print(A[i] + " ");
    }
  
    // If not possible to sort
    else
    {
        System.out.print("-1");
    }
}
  
// Driver code
public static void main(String[] args)
{
  
    int A[] = { 5, 4, 3, 2, 1 };
    int N = A.length;
  
    sortArray(A, N);
}
}
  
// This code is contributed by sapnasingh4991

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 implementation to sort 
# decreasing permutation of N 
# using triple swaps 
  
# Function to sort array 
def sortArray(A, N):
      
    # Check if possible to sort array 
    if (N % 4 == 0 or N % 4 == 1): 
  
        # Swapping to bring element 
        # at required position 
        # Bringing at least one 
        # element at correct position 
        for i in range(N // 2): 
            x = i
            if (i % 2 == 0): 
                y = N - i - 2
                z = N - i - 1
  
            # Tracing changes in Array 
            A[z] = A[y] 
            A[y] = A[x] 
            A[x] = x + 1
  
        # Print the sorted array 
        print("Sorted Array: ", end = "") 
  
        for i in range(N): 
            print(A[i], end = " "
  
    # If not possible to sort 
    else:
        print("-1")
          
# Driver code 
A = [ 5, 4, 3, 2, 1
N = len(A) 
  
sortArray(A, N)
  
# This code is contributed by yatinagg

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# implementation to sort
// decreasing permutation of N
// using triple swaps
using System;
class GFG{
  
// Function to sort array
static void sortArray(int []A, int N)
{
  
    // The three indices that
    // has to be chosen
    int x = 0, y = 0, z = 0;
  
    // Check if possible to sort array
    if (N % 4 == 0 || N % 4 == 1)
    {
  
        // Swapping to bring element
        // at required position
        // Bringing at least one
        // element at correct position
        for(int i = 0; i < N / 2; i++)
        {
            x = i;
                  
            if (i % 2 == 0)
            {
                y = N - i - 2;
                z = N - i - 1;
            }
                  
            // Tracing changes in array
            A[z] = A[y];
            A[y] = A[x];
            A[x] = x + 1;
        }
          
        // Print the sorted array
        Console.Write("Sorted Array: ");
  
        for(int i = 0; i < N; i++)
        Console.Write(A[i] + " ");
    }
  
    // If not possible to sort
    else
    {
        Console.Write("-1");
    }
}
  
// Driver code
public static void Main(String[] args)
{
    int []A = { 5, 4, 3, 2, 1 };
    int N = A.Length;
  
    sortArray(A, N);
}
}
  
// This code is contributed by sapnasingh4991

chevron_right


Output:

Sorted Array: 1 2 3 4 5

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.




My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Improved By : yatinagg, sapnasingh4991