Given an array **arr[]** of **N** integers and an integer **X**, the task is to find the maximum possible sub-array sum after applying at most **X** swaps.

**Examples:**

Input:arr[] = {5, -1, 2, 3, 4, -2, 5}, X = 2

Output:19

Swap (arr[0], arr[1]) and (arr[5], arr[6]).

Now, the maximum sub-array sum will be (5 + 2 + 3 + 4 + 5) = 19

Input:arr[] = {-2, -3, -1, -10}, X = 10

Output:-1

**Approach:** For every possible sub-array, consider the elements which are not part of this sub-array as discarded. Now, while there are swaps left and the sum of the sub-array currently under consideration can be maximized i.e. the greatest element among the discarded elements can be swapped with the minimum element of the sub-array, keep updating the sum of the sub-array. When there are no swaps left or the sub-array sum cannot be further maximized, update the current maximum sub-array sum found so far which will be the required answer in the end.

Below is the implementation of the above approach:

`// C++ implementation of the approach ` `#include <bits/stdc++.h> ` `using` `namespace` `std; ` ` ` `// Function to return the maximum ` `// sub-array sum after at most x swaps ` `int` `SubarraySum(` `int` `a[], ` `int` `n, ` `int` `x) ` `{ ` ` ` `// To store the required answer ` ` ` `int` `ans = -10000; ` ` ` ` ` `// For all possible intervals ` ` ` `for` `(` `int` `i = 0; i < n; i++) { ` ` ` `for` `(` `int` `j = i; j < n; j++) { ` ` ` ` ` `// Keep current ans as zero ` ` ` `int` `curans = 0; ` ` ` ` ` `// To store the integers which are ` ` ` `// not part of the sub-array ` ` ` `// currently under consideration ` ` ` `priority_queue<` `int` `, vector<` `int` `> > pq; ` ` ` ` ` `// To store elements which are ` ` ` `// part of the sub-array ` ` ` `// currently under consideration ` ` ` `priority_queue<` `int` `, vector<` `int` `>, greater<` `int` `> > pq2; ` ` ` ` ` `// Create two sets ` ` ` `for` `(` `int` `k = 0; k < n; k++) { ` ` ` `if` `(k >= i && k <= j) { ` ` ` `curans += a[k]; ` ` ` `pq2.push(a[k]); ` ` ` `} ` ` ` `else` ` ` `pq.push(a[k]); ` ` ` `} ` ` ` `ans = max(ans, curans); ` ` ` ` ` `// Swap at most X elements ` ` ` `for` `(` `int` `k = 1; k <= x; k++) { ` ` ` `if` `(pq.empty() || pq2.empty() ` ` ` `|| pq2.top() >= pq.top()) ` ` ` `break` `; ` ` ` ` ` `// Remove the minimum of ` ` ` `// the taken elements ` ` ` `curans -= pq2.top(); ` ` ` `pq2.pop(); ` ` ` ` ` `// Add maximum of the ` ` ` `// discarded elements ` ` ` `curans += pq.top(); ` ` ` `pq.pop(); ` ` ` ` ` `// Update the answer ` ` ` `ans = max(ans, curans); ` ` ` `} ` ` ` `} ` ` ` `} ` ` ` ` ` `// Return the maximized sub-array sum ` ` ` `return` `ans; ` `} ` ` ` `// Driver code ` `int` `main() ` `{ ` ` ` `int` `a[] = { 5, -1, 2, 3, 4, -2, 5 }, x = 2; ` ` ` `int` `n = ` `sizeof` `(a) / ` `sizeof` `(a[0]); ` ` ` ` ` `cout << SubarraySum(a, n, x); ` ` ` ` ` `return` `0; ` `} ` |

*chevron_right*

*filter_none*

**Output:**

19

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the **DSA Self Paced Course** at a student-friendly price and become industry ready.

## Recommended Posts:

- Maximum length of subarray such that all elements are equal in the subarray
- Maximum length of subarray such that sum of the subarray is even
- Minimum swaps to reach permuted array with at most 2 positions left swaps allowed
- Maximum number formed from array with K number of adjacent swaps allowed
- Maximum subarray sum in O(n) using prefix sum
- Maximum sum subarray having sum less than or equal to given sum using Set
- Size of The Subarray With Maximum Sum
- Print the Maximum Subarray Sum
- Longest subarray having maximum sum
- Maximum sum subarray having sum less than or equal to given sum
- Maximum subarray sum modulo m
- Maximum sum bitonic subarray
- Maximum sum subarray of even length
- Maximum Product Subarray | Set 3
- Maximum Product Subarray
- Maximum circular subarray sum
- Maximum Subarray Sum in a given Range
- Maximum Product Subarray | Set 2 (Using Two Traversals)
- Maximum sum subarray removing at most one element
- Maximum sum subarray such that start and end values are same

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.