Skip to content
Related Articles

Related Articles

How to Convert Pandas DataFrame into a List?
  • Last Updated : 03 May, 2021

Let’s discuss how to convert Pandas dataframe to List. First, let’s create a Basic DataFrame:

Python3




import pandas as pd 
 
# Creating a dictionary to store data
data = {'Name':['Tony', 'Steve', 'Bruce', 'Peter' ],
        'Age': [35, 70, 45, 20] } 
 
# Creating DataFrame 
df = pd.DataFrame(data) 
 
# Print the dataframe
df

 

 

Output :



 

 

At times, you may need to convert your pandas dataframe to List. To accomplish this task, ‘ tolist() ‘ function can be used. Below is a basic example to use this function and convert the required DataFrame into a List.

 

Python3




df.values.tolist()

 

 



Output : 

 

[['Tony', 35], ['Steve', 70], ['Bruce', 45], ['Peter', 20]]

 

Here, Each inner list contains all the columns of a particular row. 

 

Pandas DataFrame can be converted into lists in multiple ways. Let’s have a look at different ways of converting a DataFrame one by one.

 

Method #1: Converting a DataFrame to List containing all the rows of a particular column:

 

Python3




import pandas as pd 
 
# Creating a dictionary to store data
data = {'Name':['Tony', 'Steve', 'Bruce', 'Peter' ] ,
        'Age': [35, 70, 45, 20] } 
 
# Creating DataFrame 
df = pd.DataFrame(data) 
 
# Converting DataFrame to a list containing
# all the rows of column 'Name'
names = df['Name'].tolist()
 
# Printing the converted list.
print(names)

 

 

Output: 

 

['Tony', 'Steve', 'Bruce', 'Peter']

 

Method #2: Converting a DataFrame to Nested List containing all the rows of all the columns:

 

Python3




import pandas as pd 
 
# Creating a dictionary to store data
data = {'Name':['Tony', 'Steve', 'Bruce', 'Peter' ] ,
        'Age': [35, 70, 45, 20] } 
 
# Creating DataFrame
df = pd.DataFrame(data)
 
# Creating an empty list
res=[]
 
# Iterating through the columns of
# dataframe
for column in df.columns:
     
    # Storing the rows of a column
    # into a temporary list
    li = df[column].tolist()
     
    # appending the temporary list
    res.append(li)
     
# Printing the final list
print(res)

 

 

Output: 

 

[['Tony', 'Steve', 'Bruce', 'Peter'], [35, 70, 45, 20]]

 

Method #3: Converting a DataFrame to a list that contains lists having all the columns of a row.

 

Python3




import pandas as pd 
 
# Creating a dictionary to store data
data = {'Name':['Tony', 'Steve', 'Bruce', 'Peter' ] ,
        'Age': [35, 70, 45, 20] } 
 
# Creating DataFrame
df = pd.DataFrame(data) 
 
# Converting dataframe to list
li = df.values.tolist()
 
# Printing list
print(li)

 

 

Output :

 

[['Tony', 35], ['Steve', 70], ['Bruce', 45], ['Peter', 20]]

 

Method #4: Converting a DataFrame to a list that contains lists having all the columns of a row along with column names.

 

Python3




import pandas as pd 
 
# Creating a dictionary to store data
data = {'Name':['Tony', 'Steve', 'Bruce', 'Peter' ] ,
        'Age': [35, 70, 45, 20] } 
 
# Creating DataFrame
df = pd.DataFrame(data) 
 
# Converting dataframe to list
li = [df.columns.values.tolist()] + df.values.tolist()
 
# Printing list
print(li)

 

 

Output:

 

[[‘Name’, ‘Age’], [‘Tony’, 35], [‘Steve’, 70], [‘Bruce’, 45], [‘Peter’, 20]]

 

 Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.  

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course. And to begin with your Machine Learning Journey, join the Machine Learning – Basic Level Course

My Personal Notes arrow_drop_up
Recommended Articles
Page :