Highest power of two that divides a given number
Given a number n, find the highest power of 2 that divides n.
Examples:
Input : n = 48
Output : 16
Highest power of 2 that divides 48 is 16.
Input : n = 5
Output : 1
Highest power of 2 that divides 5 is 1.
A simple solution is to try all powers of 2 one by one starting from 1, then 2, then 4 and so on.
An efficient solution is based on bit magic. If we take a closer look, we can notice that, we basically need to find the number that has rightmost bit set at same position as n and all other bits as 0. For example, for n = 5 (101), our output is 001. For n = 48 (110000), our output is 010000
How do we find a number that has same rightmost set bit and all other bits as 0?
We follow below steps.
Let n = 48 (00110000)
Subtract one from n, i.e., we do n-1. We get 47(00101111)
Do negation of (n-1), i.e., we do ~(n-1). We get (11010000).
Do n & (~(n-1)), we get 00010000 which has value 16.
Below is the implementation of above approach:
C++
// CPP program to find highest power // of 2 that divides n. #include<iostream> using namespace std; int highestPowerOf2( int n) { return (n & (~(n - 1))); } int main() { int n = 48; cout << highestPowerOf2(n); return 0; } |
Java
// Java program to find highest power // of 2 that divides n. class GFG { static int highestPowerOf2( int n) { return (n & (~(n - 1 ))); } public static void main(String []args) { int n = 48 ; System.out.println(highestPowerOf2(n)); } } |
Python3
# Python3 program to find highest power # of 2 that divides n. def highestPowerOf2(n): return (n & (~(n - 1 ))) #Driver code if __name__ = = '__main__' : n = 48 print (highestPowerOf2(n)) # this code is contributed # by ash264 |
Javascript
<script> // javascript program to find highest power // of 2 that divides n. function highestPowerOf2(n) { return (n & (~(n - 1))); } var n = 48; document.write(highestPowerOf2(n)); // This code is contributed by 29AjayKumar </script> |
C#
// C# program to find highest power // of 2 that divides n. using System; class GFG { static int highestPowerOf2( int n) { return (n & (~(n - 1))); } public static void Main() { int n = 48; Console.Write(highestPowerOf2(n)); } } // This code is contributed // by Akanksha Rai(Abby_akku) |
PHP
<?php // PHP program to find highest power // of 2 that divides n. function highestPowerOf2( $n ) { return ( $n & (~( $n - 1))); } // Driver Code $n = 48; echo highestPowerOf2( $n ); // This code is contributed // by Sach_Code.. ?> |
16
Time Complexity: O(log2n)
Space Complexity:- O(1).
Approach – 2: This is also an efficient approach, where you can find the largest divisor of power two for a number ‘n’ using a predefined function in C for handling bits. Which is _builtin_ctz(n), this function helps you to find the trailing zeros of the number, and then you can see the bits-magic.
Input : n = 48 ~= (110000)2 // num of trailing zeros are = 4, so number of trailing zeros = 4
Output : 1<<4 =16 // pow(2,4) = 16 Highest power of 2 that divides 48 is 16.
Input : n = 21 ~= (10101)2 // no trailing zeros are present, so number of trailing zeros = 0
Output : 1<<0 =2 // pow(2,0)=1
Note: To know in the detail about such bits masking functions you can go through this article.
C
#include <stdio.h> int main() { int n = 21; int m = 48; printf ( "for %d is %d " , n, (1 << __builtin_ctz(n))); printf ( "\nfor %d is %d " , m, (1 << __builtin_ctz(m))); return 0; } |
C++
#include <iostream> using namespace std; int main() { int n = 21; int m = 48; cout << "for " << n << " is " << (1 << __builtin_ctz(n)) << endl; cout << "for " << m << " is " << (1 << __builtin_ctz(m)) << endl; return 0; } // This code is contributed by Prajwal Kandekar |
Java
public class Main { public static void main(String[] args) { int n = 21 ; int m = 48 ; System.out.println( "for " + n + " is " + ( 1 << Integer.numberOfTrailingZeros(n))); System.out.println( "for " + m + " is " + ( 1 << Integer.numberOfTrailingZeros(m))); } } |
Python3
n = 21 m = 48 print (f "for {n} is {1 << (n & -n).bit_length() - 1}" ) print (f "for {m} is {1 << (m & -m).bit_length() - 1}" ) |
Javascript
// JavaScript code for above approach // Taken n let n = 21; // Taken m let m = 48; // Printing answer console.log(` for ${n} is ${1 << (n & -n).toString(2).length - 1}`); console.log(` for ${m} is ${1 << (m & -m).toString(2).length - 1}`); |
for 21 is 1 for 48 is 16
Time Complexity: O(log2n)
Space Complexity: O(1)
Please Login to comment...