Find Next Sparse Number

A number is Sparse if there are no two adjacent 1s in its binary representation. For example 5 (binary representation: 101) is sparse, but 6 (binary representation: 110) is not sparse.
Given a number x, find the smallest Sparse number which greater than or equal to x.

Examples:

Input: x = 6
Output: Next Sparse Number is 8

Input: x = 4
Output: Next Sparse Number is 4

Input: x = 38
Output: Next Sparse Number is 40

Input: x = 44
Output: Next Sparse Number is 64



We strongly recommend that you click here and practice it, before moving on to the solution.

A Simple Solution is to do following:

1) Write a utility function isSparse(x) that takes a number 
   and returns true if x is sparse, else false.  This function
   can be easily written by traversing the bits of input number.
2) Start from x and do following 
   while(1)
   {
      if (isSparse(x))
         return x;
      else 
         x++
   }

Time complexity of isSparse() is O(Log x). Time complexity of this solution is O(x Log x). The next sparse number can be at most O(x) distance away.

Thanks to kk_angel for suggesting above solution.



An Efficient Solution can solve this problem without checking all numbers on by one. Below are steps.

1) Find binary of the given number and store it in a 
   boolean array.
2) Initialize last_finalized bit position as 0.
2) Start traversing the binary from least significant bit.
    a) If we get two adjacent 1's such that next (or third) 
       bit is not 1, then 
          (i)  Make all bits after this 1 to last finalized
               bit (including last finalized) as 0. 
          (ii) Update last finalized bit as next bit. 

For example, let binary representation be 01010001011101, we change it to 01010001100000 (all bits after highlighted 11 are set to 0). Again two 1’s are adjacent, so change binary representation to 01010010000000. This is our final answer.

Below is the implementation of above solution.

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ program to find next sparse number
#include<bits/stdc++.h>
using namespace std;
  
int nextSparse(int x)
{
    // Find binary representation of x and store it in bin[].
    // bin[0] contains least significant bit (LSB), next
    // bit is in bin[1], and so on.
    vector<bool> bin;
    while (x != 0)
    {
        bin.push_back(x&1);
        x >>= 1;
    }
  
    // There my be extra bit in result, so add one extra bit
    bin.push_back(0);
    int n = bin.size();  // Size of binary representation
  
    // The position till which all bits are finalized
    int last_final = 0;
  
    // Start from second bit (next to LSB)
    for (int i=1; i<n-1; i++)
    {
       // If current bit and its previous bit are 1, but next
       // bit is not 1.
       if (bin[i] == 1 && bin[i-1] == 1 && bin[i+1] != 1)
       {
            // Make the next bit 1
            bin[i+1] = 1;
  
            // Make all bits before current bit as 0 to make
            // sure that we get the smallest next number
            for (int j=i; j>=last_final; j--)
                bin[j] = 0;
  
            // Store position of the bit set so that this bit
            // and bits before it are not changed next time.
            last_final = i+1;
        }
    }
  
    // Find decimal equivalent of modified bin[]
    int ans = 0;
    for (int i =0; i<n; i++)
        ans += bin[i]*(1<<i);
    return ans;
}
  
// Driver program
int main()
{
    int x = 38;
    cout << "Next Sparse Number is " << nextSparse(x);
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program to find next sparse number 
import java.util.*; 
  
class GFG{
static int nextSparse(int x) 
    // Find binary representation of x and store it in bin.get(]. 
    // bin.get(0] contains least significant bit (LSB), next 
    // bit is in bin.get(1], and so on. 
    ArrayList<Integer> bin = new ArrayList<Integer>(); 
    while (x != 0
    
        bin.add(x&1); 
        x >>= 1
    
  
    // There my be extra bit in result, so add one extra bit 
    bin.add(0); 
    int n = bin.size(); // Size of binary representation 
  
    // The position till which all bits are finalized 
    int last_final = 0
  
    // Start from second bit (next to LSB) 
    for (int i=1; i<n-1; i++) 
    
    // If current bit and its previous bit are 1, but next 
    // bit is not 1. 
    if (bin.get(i) == 1 && bin.get(i-1) == 1 && bin.get(i+1) != 1
    
            // Make the next bit 1 
            bin.set(i+1,1); 
  
            // Make all bits before current bit as 0 to make 
            // sure that we get the smallest next number 
            for (int j=i; j>=last_final; j--) 
                bin.set(j,0); 
  
            // Store position of the bit set so that this bit 
            // and bits before it are not changed next time. 
            last_final = i+1
        
    
  
    // Find decimal equivalent of modified bin.get(] 
    int ans = 0
    for (int i =0; i<n; i++) 
        ans += bin.get(i)*(1<<i); 
    return ans; 
  
// Driver program 
public static void main(String[] args) 
    int x = 38
    System.out.println("Next Sparse Number is "+nextSparse(x));
}
// This code is contributed by mits

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 program to find next 
# sparse number 
  
def nextSparse(x):
      
    # Find binary representation of 
    # x and store it in bin[]. 
    # bin[0] contains least significant 
    # bit (LSB), next bit is in bin[1], 
    # and so on. 
    bin = [] 
    while (x != 0):
        bin.append(x & 1
        x >>= 1
  
    # There my be extra bit in result, 
    # so add one extra bit 
    bin.append(0
    n = len(bin) # Size of binary representation 
      
    # The position till which all 
    # bits are finalized 
    last_final = 0
  
    # Start from second bit (next to LSB) 
    for i in range(1,n - 1):
          
        # If current bit and its previous 
        # bit are 1, but next bit is not 1.
        if ((bin[i] == 1 and bin[i - 1] == 1 
            and bin[i + 1] != 1)):
                  
            # Make the next bit 1
            bin[i + 1] = 1 
              
            # Make all bits before current
            # bit as 0 to make sure that 
            # we get the smallest next number 
            for j in range(i,last_final-1,-1):
                bin[j] = 0
              
            # Store position of the bit set
            # so that this bit and bits
            # before it are not changed next time.
            last_final = i + 1 
  
    # Find decimal equivalent 
    # of modified bin[] 
    ans = 0 
    for i in range(n): 
        ans += bin[i] * (1 << i) 
    return ans 
  
# Driver Code
if __name__=='__main__':
    x = 38 
    print("Next Sparse Number is",nextSparse(x)) 
  
# This code is contributed by 
# mits 

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program to find next sparse number 
using System;
using System.Collections;
  
  
class GFG{
static int nextSparse(int x) 
    // Find binary representation of x and store it in bin.get(]. 
    // bin.get(0] contains least significant bit (LSB), next 
    // bit is in bin.get(1], and so on. 
    ArrayList bin = new ArrayList(); 
    while (x != 0) 
    
        bin.Add(x&1); 
        x >>= 1; 
    
  
    // There my be extra bit in result, so add one extra bit 
    bin.Add(0); 
    int n = bin.Count; // Size of binary representation 
  
    // The position till which all bits are finalized 
    int last_final = 0; 
  
    // Start from second bit (next to LSB) 
    for (int i = 1; i < n-1; i++) 
    
    // If current bit and its previous bit are 1, but next 
    // bit is not 1. 
    if ((int)bin[i] == 1 && (int)bin[i-1] == 1 && (int)bin[i+1] != 1) 
    
            // Make the next bit 1 
            bin[i+1]=1; 
  
            // Make all bits before current bit as 0 to make 
            // sure that we get the smallest next number 
            for (int j = i; j >= last_final; j--) 
                bin[j]=0; 
  
            // Store position of the bit set so that this bit 
            // and bits before it are not changed next time. 
            last_final = i + 1; 
        
    
  
    // Find decimal equivalent of modified bin.get(] 
    int ans = 0; 
    for (int i = 0; i < n; i++) 
        ans += (int)bin[i]*(1<<i); 
    return ans; 
  
// Driver program 
static void Main() 
    int x = 38; 
    Console.WriteLine("Next Sparse Number is "+nextSparse(x));
}
// This code is contributed by mits

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
// PHP program to find next sparse number
  
function nextSparse($x)
{
    // Find binary representation of
    // x and store it in bin[].
    // bin[0] contains least significant
    // bit (LSB), next bit is in bin[1], 
    // and so on.
    $bin = array();
    while ($x != 0)
    {
        array_push($bin, $x & 1);
        $x >>= 1;
    }
  
    // There my be extra bit in result,
    // so add one extra bit
    array_push($bin, 0);
    $n = count($bin); // Size of binary representation
      
    // The position till which all 
    // bits are finalized
    $last_final = 0;
  
    // Start from second bit (next to LSB)
    for ($i = 1; $i < $n - 1; $i++)
    {
    // If current bit and its previous 
    // bit are 1, but next bit is not 1.
    if ($bin[$i] == 1 && 
        $bin[$i - 1] == 1 && 
        $bin[$i + 1] != 1)
    {
        // Make the next bit 1
        $bin[$i + 1] = 1;
  
        // Make all bits before current 
        // bit as 0 to make sure that 
        // we get the smallest next number
        for ($j = $i; $j >= $last_final; $j--)
            $bin[$j] = 0;
  
        // Store position of the bit set 
        // so that this bit and bits 
        // before it are not changed next time.
        $last_final = $i + 1;
    }
    }
  
    // Find decimal equivalent
    // of modified bin[]
    $ans = 0;
    for ($i = 0; $i < $n; $i++)
        $ans += $bin[$i] * (1 << $i);
    return $ans;
}
  
// Driver Code
$x = 38;
echo "Next Sparse Number is "
                nextSparse($x);
  
// This code is contributed by mits
?>

chevron_right



Output:

Next Sparse Number is 40

Time complexity of this solution is O(Log x).

Thanks to gccode for suggesting above solution.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.



My Personal Notes arrow_drop_up

Improved By : Mithun Kumar