Given an array arr[], the task is to answer queries to find the maximum of all the elements in the index range arr[L…R].
Examples:
Input: arr[] = {6, 7, 4, 5, 1, 3}, q[][] = {{0, 5}, {3, 5}, {2, 4}} Output: 7 5 5 Input: arr[] = {3, 34, 1}, q[][] = {{1, 2}} Output: 34
Approach: A similar problem to answer range minimum queries has been discussed here. The same approach can be modified to answer range maximum queries. Below is the modification:
// Maximum of single element subarrays is same // as the only element lookup[i][0] = arr[i] // If lookup[0][2] ≥ lookup[4][2], // then lookup[0][3] = lookup[0][2] If lookup[i][j-1] ≥ lookup[i+2j-1-1][j-1] lookup[i][j] = lookup[i][j-1] // If lookup[0][2] < lookup[4][2], // then lookup[0][3] = lookup[4][2] Else lookup[i][j] = lookup[i+2j-1-1][j-1]
Below is the implementation of the above approach:
C++
// C++ implementation of the approach #include <bits/stdc++.h> using namespace std; #define MAX 500 // lookup[i][j] is going to store maximum // value in arr[i..j]. Ideally lookup table // size should not be fixed and should be // determined using n Log n. It is kept // constant to keep code simple. int lookup[MAX][MAX]; // Fills lookup array lookup[][] in bottom up manner void buildSparseTable( int arr[], int n) { // Initialize M for the intervals with length 1 for ( int i = 0; i < n; i++) lookup[i][0] = arr[i]; // Compute values from smaller to bigger intervals for ( int j = 1; (1 << j) <= n; j++) { // Compute maximum value for all intervals with // size 2^j for ( int i = 0; (i + (1 << j) - 1) < n; i++) { // For arr[2][10], we compare arr[lookup[0][7]] // and arr[lookup[3][10]] if (lookup[i][j - 1] > lookup[i + (1 << (j - 1))][j - 1]) lookup[i][j] = lookup[i][j - 1]; else lookup[i][j] = lookup[i + (1 << (j - 1))][j - 1]; } } } // Returns maximum of arr[L..R] int query( int L, int R) { // Find highest power of 2 that is smaller // than or equal to count of elements in given // range // For [2, 10], j = 3 int j = ( int )log2(R - L + 1); // Compute maximum of last 2^j elements with first // 2^j elements in range // For [2, 10], we compare arr[lookup[0][3]] and // arr[lookup[3][3]] if (lookup[L][j] >= lookup[R - (1 << j) + 1][j]) return lookup[L][j]; else return lookup[R - (1 << j) + 1][j]; } // Driver program int main() { int a[] = { 7, 2, 3, 0, 5, 10, 3, 12, 18 }; int n = sizeof (a) / sizeof (a[0]); buildSparseTable(a, n); cout << query(0, 4) << endl; cout << query(4, 7) << endl; cout << query(7, 8) << endl; return 0; } |
Java
// Java implementation of the approach import java.util.*; class GFG { static final int MAX = 500 ; // lookup[i][j] is going to store maximum // value in arr[i..j]. Ideally lookup table // size should not be fixed and should be // determined using n Log n. It is kept // constant to keep code simple. static int lookup[][] = new int [MAX][MAX]; // Fills lookup array lookup[][] in bottom up manner static void buildSparseTable( int arr[], int n) { // Initialize M for the intervals with length 1 for ( int i = 0 ; i < n; i++) lookup[i][ 0 ] = arr[i]; // Compute values from smaller to bigger intervals for ( int j = 1 ; ( 1 << j) <= n; j++) { // Compute maximum value for all intervals with // size 2^j for ( int i = 0 ; (i + ( 1 << j) - 1 ) < n; i++) { // For arr[2][10], we compare arr[lookup[0][7]] // and arr[lookup[3][10]] if (lookup[i][j - 1 ] > lookup[i + ( 1 << (j - 1 ))][j - 1 ]) lookup[i][j] = lookup[i][j - 1 ]; else lookup[i][j] = lookup[i + ( 1 << (j - 1 ))][j - 1 ]; } } } // Returns maximum of arr[L..R] static int query( int L, int R) { // Find highest power of 2 that is smaller // than or equal to count of elements in given // range // For [2, 10], j = 3 int j = ( int )Math.log(R - L + 1 ); // Compute maximum of last 2^j elements with first // 2^j elements in range // For [2, 10], we compare arr[lookup[0][3]] and // arr[lookup[3][3]] if (lookup[L][j] >= lookup[R - ( 1 << j) + 1 ][j]) return lookup[L][j]; else return lookup[R - ( 1 << j) + 1 ][j]; } // Driver program public static void main(String args[]) { int a[] = { 7 , 2 , 3 , 0 , 5 , 10 , 3 , 12 , 18 }; int n = a.length; buildSparseTable(a, n); System.out.println(query( 0 , 4 )); System.out.println(query( 4 , 7 )); System.out.println(query( 7 , 8 )); } } |
Python3
# Python3 implementation of the approach from math import log MAX = 500 # lookup[i][j] is going to store maximum # value in arr[i..j]. Ideally lookup table # size should not be fixed and should be # determined using n Log n. It is kept # constant to keep code simple. lookup = [[ 0 for i in range ( MAX )] for i in range ( MAX )] # Fills lookup array lookup[][] # in bottom up manner def buildSparseTable(arr, n): # Initialize M for the intervals # with length 1 for i in range (n): lookup[i][ 0 ] = arr[i] # Compute values from smaller # to bigger intervals i, j = 0 , 1 while ( 1 << j) < = n: # Compute maximum value for # all intervals with size 2^j while (i + ( 1 << j) - 1 ) < n: # For arr[2][10], we compare arr[lookup[0][7]] # and arr[lookup[3][10]] if (lookup[i][j - 1 ] > lookup[i + ( 1 << (j - 1 ))][j - 1 ]): lookup[i][j] = lookup[i][j - 1 ] else : lookup[i][j] = lookup[i + ( 1 << (j - 1 ))][j - 1 ] i + = 1 j + = 1 # Returns maximum of arr[L..R] def query(L, R): # Find highest power of 2 that is smaller # than or equal to count of elements in given # range # For [2, 10], j = 3 j = int (log(R - L + 1 )) # Compute maximum of last 2^j elements with first # 2^j elements in range # For [2, 10], we compare arr[lookup[0][3]] and # arr[lookup[3][3]] if (lookup[L][j] > = lookup[R - ( 1 << j) + 1 ][j]): return lookup[L][j] else : return lookup[R - ( 1 << j) + 1 ][j] # Driver Code a = [ 7 , 2 , 3 , 0 , 5 , 10 , 3 , 12 , 18 ] n = len (a) buildSparseTable(a, n); print (query( 0 , 4 )) print (query( 4 , 7 )) print (query( 7 , 8 )) # This code is contributed by Mohit Kumar |
C#
// Java implementation of the approach using System; class GFG { static int MAX = 500; // lookup[i][j] is going to store maximum // value in arr[i..j]. Ideally lookup table // size should not be fixed and should be // determined using n Log n. It is kept // constant to keep code simple. static int [, ] lookup = new int [MAX, MAX]; // Fills lookup array lookup[][] in bottom up manner static void buildSparseTable( int [] arr, int n) { // Initialize M for the intervals with length 1 for ( int i = 0; i < n; i++) lookup[i, 0] = arr[i]; // Compute values from smaller to bigger intervals for ( int j = 1; (1 << j) <= n; j++) { // Compute maximum value for all intervals with // size 2^j for ( int i = 0; (i + (1 << j) - 1) < n; i++) { // For arr[2][10], we compare arr[lookup[0][7]] // and arr[lookup[3][10]] if (lookup[i, j - 1] > lookup[i + (1 << (j - 1)), j - 1]) lookup[i, j] = lookup[i, j - 1]; else lookup[i, j] = lookup[i + (1 << (j - 1)), j - 1]; } } } // Returns maximum of arr[L..R] static int query( int L, int R) { // Find highest power of 2 that is smaller // than or equal to count of elements in given // range // For [2, 10], j = 3 int j = ( int )Math.Log(R - L + 1); // Compute maximum of last 2^j elements with first // 2^j elements in range // For [2, 10], we compare arr[lookup[0][3]] and // arr[lookup[3][3]] if (lookup[L, j] >= lookup[R - (1 << j) + 1, j]) return lookup[L, j]; else return lookup[R - (1 << j) + 1, j]; } // Driver program public static void Main(String[] args) { int [] a = { 7, 2, 3, 0, 5, 10, 3, 12, 18 }; int n = a.Length; buildSparseTable(a, n); Console.WriteLine(query(0, 4)); Console.WriteLine(query(4, 7)); Console.WriteLine(query(7, 8)); } } |
7 12 18
So sparse table method supports query operation in O(1) time with O(n Log n) preprocessing time and O(n Log n) space.
Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready. To complete your preparation from learning a language to DS Algo and many more, please refer Complete Interview Preparation Course.