Skip to content
Related Articles

Related Articles

Improve Article
Save Article
Like Article

Range sum query using Sparse Table

  • Difficulty Level : Medium
  • Last Updated : 18 May, 2021

We have an array arr[]. We need to find the sum of all the elements in the range L and R where 0 <= L <= R <= n-1. Consider a situation when there are many range queries.
Examples: 
 

Input : 3 7 2 5 8 9
        query(0, 5)
        query(3, 5)
        query(2, 4)
Output : 34
         22
         15

Note : array is 0 based indexed
       and queries too.

 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.

Since there are no updates/modifications, we use Sparse table to answer queries efficiently. In sparse table, we break queries in powers of 2. 
 



Suppose we are asked to compute sum of 
elements from arr[i] to arr[i+12]. 
We do the following:

// Use sum of 8 (or 23) elements 
table[i][3] = sum(arr[i], arr[i + 1], ...
                               arr[i + 7]).

// Use sum of 4 elements
table[i+8][2] = sum(arr[i+8], arr[i+9], ..
                                arr[i+11]).

// Use sum of single element
table[i + 12][0] = sum(arr[i + 12]).

Our result is sum of above values.

Notice that it took only 4 actions to compute result over subarray of size 13. 
 

C++




// CPP program to find the sum in a given
// range in an array using sparse table.
#include <bits/stdc++.h>
using namespace std;
 
// Because 2^17 is larger than 10^5
const int k = 16;
 
// Maximum value of array
const int N = 1e5;
 
// k + 1 because we need to access
// table[r][k]
long long table[N][k + 1];
 
// it builds sparse table.
void buildSparseTable(int arr[], int n)
{
    for (int i = 0; i < n; i++)
        table[i][0] = arr[i];
 
    for (int j = 1; j <= k; j++)
        for (int i = 0; i <= n - (1 << j); i++)
            table[i][j] = table[i][j - 1] +
               table[i + (1 << (j - 1))][j - 1];
}
 
// Returns the sum of the elements in the range
// L and R.
long long query(int L, int R)
{
    // boundaries of next query, 0-indexed
    long long answer = 0;
    for (int j = k; j >= 0; j--) {
        if (L + (1 << j) - 1 <= R) {
            answer = answer + table[L][j];
 
            // instead of having L', we
            // increment L directly
            L += 1 << j;
        }
    }
    return answer;
}
 
// Driver program.
int main()
{
    int arr[] = { 3, 7, 2, 5, 8, 9 };
    int n = sizeof(arr) / sizeof(arr[0]);
 
    buildSparseTable(arr, n);
 
    cout << query(0, 5) << endl;
    cout << query(3, 5) << endl;
    cout << query(2, 4) << endl;
 
    return 0;
}

Java




// Java program to find the sum
// in a given range in an array
// using sparse table.
class GFG
{
     
// Because 2^17 is larger than 10^5
static int k = 16;
 
// Maximum value of array
static int N = 100000;
 
// k + 1 because we need
// to access table[r][k]
static long table[][] = new long[N][k + 1];
 
// it builds sparse table.
static void buildSparseTable(int arr[],
                             int n)
{
    for (int i = 0; i < n; i++)
        table[i][0] = arr[i];
 
    for (int j = 1; j <= k; j++)
        for (int i = 0; i <= n - (1 << j); i++)
            table[i][j] = table[i][j - 1] +
            table[i + (1 << (j - 1))][j - 1];
}
 
// Returns the sum of the
// elements in the range L and R.
static long query(int L, int R)
{
    // boundaries of next query,
    // 0-indexed
    long answer = 0;
    for (int j = k; j >= 0; j--)
    {
        if (L + (1 << j) - 1 <= R)
        {
            answer = answer + table[L][j];
 
            // instead of having L', we
            // increment L directly
            L += 1 << j;
        }
    }
    return answer;
}
 
// Driver Code
public static void main(String args[])
{
    int arr[] = { 3, 7, 2, 5, 8, 9 };
    int n = arr.length;
 
    buildSparseTable(arr, n);
 
    System.out.println(query(0, 5));
    System.out.println(query(3, 5));
    System.out.println(query(2, 4));
}
}
 
// This code is contributed
// by Kirti_Mangal

C#




// C# program to find the
// sum in a given range
// in an array using
// sparse table.
using System;
 
class GFG
{
    // Because 2^17 is
    // larger than 10^5
    static int k = 16;
     
    // Maximum value
    // of array
    static int N = 100000;
     
    // k + 1 because we
    // need to access table[r,k]
    static long [,]table =
           new long[N, k + 1];
     
    // it builds sparse table.
    static void buildSparseTable(int []arr,
                                 int n)
    {
        for (int i = 0; i < n; i++)
            table[i, 0] = arr[i];
     
        for (int j = 1; j <= k; j++)
            for (int i = 0;    
                     i <= n - (1 << j); i++)
                table[i, j] = table[i, j - 1] +
                table[i + (1 << (j - 1)), j - 1];
    }    
     
    // Returns the sum of the
    // elements in the range
    // L and R.
    static long query(int L, int R)
    {
        // boundaries of next
        // query, 0-indexed
        long answer = 0;
        for (int j = k; j >= 0; j--)
        {
            if (L + (1 << j) - 1 <= R)
            {
                answer = answer +
                         table[L, j];
     
                // instead of having
                // L', we increment
                // L directly
                L += 1 << j;
            }
        }
        return answer;
    }
     
    // Driver Code
    static void Main()
    {
        int []arr = new int[]{3, 7, 2,
                              5, 8, 9};
        int n = arr.Length;
     
        buildSparseTable(arr, n);
     
        Console.WriteLine(query(0, 5));
        Console.WriteLine(query(3, 5));
        Console.WriteLine(query(2, 4));
    }
}
 
// This code is contributed by
// Manish Shaw(manishshaw1)

Python3




# Python3 program to find the sum in a given
# range in an array using sparse table.
 
# Because 2^17 is larger than 10^5
k = 16
 
# Maximum value of array
n = 100000
 
# k + 1 because we need to access
# table[r][k]
 
table = [[0 for j in range(k+1)] for i in range(n)]
 
# it builds sparse table
def buildSparseTable(arr, n):
    global table, k
    for i in range(n):
        table[i][0] = arr[i]
 
    for j in range(1,k+1):
        for i in range(0,n-(1<<j)+1):
            table[i][j] = table[i][j-1] + \
                          table[i + (1 << (j - 1))][j - 1]
 
# Returns the sum of the elements in the range
# L and R.
def query(L, R):
    global table, k
 
    # boundaries of next query, 0 - indexed
    answer = 0
    for j in range(k,-1,-1):
        if (L + (1 << j) - 1 <= R):
            answer = answer + table[L][j]
 
            # instead of having L ', we
            # increment L directly
            L+=1<<j
 
    return answer
 
# Driver program
if __name__ == '__main__':
    arr = [3, 7, 2, 5, 8, 9]
    n = len(arr)
 
    buildSparseTable(arr, n)
    print(query(0,5))
    print(query(3,5))
    print(query(2,4))
     
# This code is contributed by
# chaudhary_19 (Mayank Chaudhary)

Javascript




<script>
// JavaScript program to find the sum in a given
// range in an array using sparse table.
 
// Because 2^17 is larger than 10^5
const k = 16;
 
// Maximum value of array
const N = 1e5;
 
// k + 1 because we need to access
// table[r][k]
const table = new Array(N).fill(0).map(() => new Array(k + 1).fill(0));
 
// it builds sparse table.
function buildSparseTable(arr, n)
{
    for (let i = 0; i < n; i++)
        table[i][0] = arr[i];
 
    for (let j = 1; j <= k; j++)
        for (let i = 0; i <= n - (1 << j); i++)
            table[i][j] = table[i][j - 1] +
            table[i + (1 << (j - 1))][j - 1];
}
 
// Returns the sum of the elements in the range
// L and R.
function query(L, R)
{
 
    // boundaries of next query, 0-indexed
    let answer = 0;
    for (let j = k; j >= 0; j--)
    {
        if (L + (1 << j) - 1 <= R)
        {
            answer = answer + table[L][j];
 
            // instead of having L', we
            // increment L directly
            L += 1 << j;
        }
    }
    return answer;
}
 
// Driver program.
    let arr = [ 3, 7, 2, 5, 8, 9 ];
    let n = arr.length;
 
    buildSparseTable(arr, n);
 
    document.write(query(0, 5) + "<br>");
    document.write(query(3, 5) + "<br>");
    document.write(query(2, 4) + "<br>");
 
// This code is contributed by Manoj.
</script>

Output: 
 

34
22
15

This algorithm for answering queries with Sparse Table works in O(k), which is O(log(n)) because we choose minimal k such that 2^k+1 > n.
Time complexity of sparse table construction : Outer loop runs in O(k), inner loop runs in O(n). Thus, in total we get O(n * k) = O(n * log(n)) 
 




My Personal Notes arrow_drop_up
Recommended Articles
Page :

Start Your Coding Journey Now!