# Range sum query using Sparse Table

• Difficulty Level : Medium
• Last Updated : 18 May, 2021

We have an array arr[]. We need to find the sum of all the elements in the range L and R where 0 <= L <= R <= n-1. Consider a situation when there are many range queries.
Examples:

```Input : 3 7 2 5 8 9
query(0, 5)
query(3, 5)
query(2, 4)
Output : 34
22
15

Note : array is 0 based indexed
and queries too.```

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.

Since there are no updates/modifications, we use Sparse table to answer queries efficiently. In sparse table, we break queries in powers of 2.

```Suppose we are asked to compute sum of
elements from arr[i] to arr[i+12].
We do the following:

// Use sum of 8 (or 23) elements
table[i] = sum(arr[i], arr[i + 1], ...
arr[i + 7]).

// Use sum of 4 elements
table[i+8] = sum(arr[i+8], arr[i+9], ..
arr[i+11]).

// Use sum of single element
table[i + 12] = sum(arr[i + 12]).

Our result is sum of above values.```

Notice that it took only 4 actions to compute result over subarray of size 13.

## C++

 `// CPP program to find the sum in a given``// range in an array using sparse table.``#include ``using` `namespace` `std;` `// Because 2^17 is larger than 10^5``const` `int` `k = 16;` `// Maximum value of array``const` `int` `N = 1e5;` `// k + 1 because we need to access``// table[r][k]``long` `long` `table[N][k + 1];` `// it builds sparse table.``void` `buildSparseTable(``int` `arr[], ``int` `n)``{``    ``for` `(``int` `i = 0; i < n; i++)``        ``table[i] = arr[i];` `    ``for` `(``int` `j = 1; j <= k; j++)``        ``for` `(``int` `i = 0; i <= n - (1 << j); i++)``            ``table[i][j] = table[i][j - 1] +``               ``table[i + (1 << (j - 1))][j - 1];``}` `// Returns the sum of the elements in the range``// L and R.``long` `long` `query(``int` `L, ``int` `R)``{``    ``// boundaries of next query, 0-indexed``    ``long` `long` `answer = 0;``    ``for` `(``int` `j = k; j >= 0; j--) {``        ``if` `(L + (1 << j) - 1 <= R) {``            ``answer = answer + table[L][j];` `            ``// instead of having L', we``            ``// increment L directly``            ``L += 1 << j;``        ``}``    ``}``    ``return` `answer;``}` `// Driver program.``int` `main()``{``    ``int` `arr[] = { 3, 7, 2, 5, 8, 9 };``    ``int` `n = ``sizeof``(arr) / ``sizeof``(arr);` `    ``buildSparseTable(arr, n);` `    ``cout << query(0, 5) << endl;``    ``cout << query(3, 5) << endl;``    ``cout << query(2, 4) << endl;` `    ``return` `0;``}`

## Java

 `// Java program to find the sum``// in a given range in an array``// using sparse table.``class` `GFG``{``    ` `// Because 2^17 is larger than 10^5``static` `int` `k = ``16``;` `// Maximum value of array``static` `int` `N = ``100000``;` `// k + 1 because we need``// to access table[r][k]``static` `long` `table[][] = ``new` `long``[N][k + ``1``];` `// it builds sparse table.``static` `void` `buildSparseTable(``int` `arr[],``                             ``int` `n)``{``    ``for` `(``int` `i = ``0``; i < n; i++)``        ``table[i][``0``] = arr[i];` `    ``for` `(``int` `j = ``1``; j <= k; j++)``        ``for` `(``int` `i = ``0``; i <= n - (``1` `<< j); i++)``            ``table[i][j] = table[i][j - ``1``] +``            ``table[i + (``1` `<< (j - ``1``))][j - ``1``];``}` `// Returns the sum of the``// elements in the range L and R.``static` `long` `query(``int` `L, ``int` `R)``{``    ``// boundaries of next query,``    ``// 0-indexed``    ``long` `answer = ``0``;``    ``for` `(``int` `j = k; j >= ``0``; j--)``    ``{``        ``if` `(L + (``1` `<< j) - ``1` `<= R)``        ``{``            ``answer = answer + table[L][j];` `            ``// instead of having L', we``            ``// increment L directly``            ``L += ``1` `<< j;``        ``}``    ``}``    ``return` `answer;``}` `// Driver Code``public` `static` `void` `main(String args[])``{``    ``int` `arr[] = { ``3``, ``7``, ``2``, ``5``, ``8``, ``9` `};``    ``int` `n = arr.length;` `    ``buildSparseTable(arr, n);` `    ``System.out.println(query(``0``, ``5``));``    ``System.out.println(query(``3``, ``5``));``    ``System.out.println(query(``2``, ``4``));``}``}` `// This code is contributed``// by Kirti_Mangal`

## C#

 `// C# program to find the``// sum in a given range``// in an array using``// sparse table.``using` `System;` `class` `GFG``{``    ``// Because 2^17 is``    ``// larger than 10^5``    ``static` `int` `k = 16;``    ` `    ``// Maximum value``    ``// of array``    ``static` `int` `N = 100000;``    ` `    ``// k + 1 because we``    ``// need to access table[r,k]``    ``static` `long` `[,]table =``           ``new` `long``[N, k + 1];``    ` `    ``// it builds sparse table.``    ``static` `void` `buildSparseTable(``int` `[]arr,``                                 ``int` `n)``    ``{``        ``for` `(``int` `i = 0; i < n; i++)``            ``table[i, 0] = arr[i];``    ` `        ``for` `(``int` `j = 1; j <= k; j++)``            ``for` `(``int` `i = 0;    ``                     ``i <= n - (1 << j); i++)``                ``table[i, j] = table[i, j - 1] +``                ``table[i + (1 << (j - 1)), j - 1];``    ``}    ``    ` `    ``// Returns the sum of the``    ``// elements in the range``    ``// L and R.``    ``static` `long` `query(``int` `L, ``int` `R)``    ``{``        ``// boundaries of next``        ``// query, 0-indexed``        ``long` `answer = 0;``        ``for` `(``int` `j = k; j >= 0; j--)``        ``{``            ``if` `(L + (1 << j) - 1 <= R)``            ``{``                ``answer = answer +``                         ``table[L, j];``    ` `                ``// instead of having``                ``// L', we increment``                ``// L directly``                ``L += 1 << j;``            ``}``        ``}``        ``return` `answer;``    ``}``    ` `    ``// Driver Code``    ``static` `void` `Main()``    ``{``        ``int` `[]arr = ``new` `int``[]{3, 7, 2,``                              ``5, 8, 9};``        ``int` `n = arr.Length;``    ` `        ``buildSparseTable(arr, n);``    ` `        ``Console.WriteLine(query(0, 5));``        ``Console.WriteLine(query(3, 5));``        ``Console.WriteLine(query(2, 4));``    ``}``}` `// This code is contributed by``// Manish Shaw(manishshaw1)`

## Python3

 `# Python3 program to find the sum in a given``# range in an array using sparse table.` `# Because 2^17 is larger than 10^5``k ``=` `16` `# Maximum value of array``n ``=` `100000` `# k + 1 because we need to access``# table[r][k]` `table ``=` `[[``0` `for` `j ``in` `range``(k``+``1``)] ``for` `i ``in` `range``(n)]` `# it builds sparse table``def` `buildSparseTable(arr, n):``    ``global` `table, k``    ``for` `i ``in` `range``(n):``        ``table[i][``0``] ``=` `arr[i]` `    ``for` `j ``in` `range``(``1``,k``+``1``):``        ``for` `i ``in` `range``(``0``,n``-``(``1``<

## Javascript

 ``

Output:

```34
22
15```

This algorithm for answering queries with Sparse Table works in O(k), which is O(log(n)) because we choose minimal k such that 2^k+1 > n.
Time complexity of sparse table construction : Outer loop runs in O(k), inner loop runs in O(n). Thus, in total we get O(n * k) = O(n * log(n))

My Personal Notes arrow_drop_up